Question

In: Physics

A simple insulator has a band gap of 4.0 eV, and the Fermi energy may be...

A simple insulator has a band gap of 4.0 eV, and the Fermi energy may be taken to reside in the middle of the gap. Estimate the probability of an electron at room temperature being in the conduction band.

Solutions

Expert Solution


Related Solutions

Doping changes the Fermi energy of a semiconductor. Consider silicon, with a gap of 1.11 eV...
Doping changes the Fermi energy of a semiconductor. Consider silicon, with a gap of 1.11 eV between the top of the valence band and the bottom of the conduction band. At 300 K the Fermi level of the pure material is nearly at the midpoint of the gap. Suppose that silicon is doped with donor atoms, each of which has a state 0.13 eV below the bottom of the silicon conduction band, and suppose further that doping raises the Fermi...
The fermi function value is non zero within the band gap of a semiconductor. if the...
The fermi function value is non zero within the band gap of a semiconductor. if the fermi level is within the band gap. Do you expect electrons or holes to populate energy states within the band gap? If yes, why? If not, why?
In an n-type semiconductor, the Fermi level lies 0.5 eV below the conduction band. If the...
In an n-type semiconductor, the Fermi level lies 0.5 eV below the conduction band. If the conduction of donor atoms is tripled, find the new position of the Fermi level, given KT = 0.03 eV.
The Fermi energy for copper is EF = 7.00 eV. For copper at T = 1030...
The Fermi energy for copper is EF = 7.00 eV. For copper at T = 1030 K, (a) find the energy of the energy level whose probability of being occupied by an electron is 0.933. For this energy, evaluate (b) the density of states N(E) and (c) the density of occupied states No(E).
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron...
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron and atom per volume. b) Find the fermi velocity of electron in silver c) The current value flowing through silver is 2 A. The cross sectional area of silver is 0.5 cm2 . Find the drift velocity of electron in silver according to given conditions. d)Find the collision time T for an electron for sliver. (the definition of current density is the current per...
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron...
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron and atom per volume. b) Find the fermi velocity of electron in silver c) The current value flowing through silver is 2 A. The cross sectional area of silver is 0.5 cm2. Find the drift velocity of electron in silver according to given conditions. d)Find the collision time  for an electron for sliver. (the definition of current density is the current per cross...
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron...
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron and atom per volume. b) Find the fermi velocity of electron in silver c) The current value flowing through silver is 2 A. The cross sectional area of silver is 0.5 cm2. Find the drift velocity of electron in silver according to given conditions. d)Find the collision time  for an electron for sliver. (the definition of current density is the current per cross...
describe how the energy gap of a semiconductor is different from that of insulator and conductor...
describe how the energy gap of a semiconductor is different from that of insulator and conductor .
The Fermi energy for Cu is 7.0 eV and its conductivity at room temperature is measured...
The Fermi energy for Cu is 7.0 eV and its conductivity at room temperature is measured to be sigma = 5.9x10^7 omega ^-1 m^-1 a.(5 pts) What is the Fermi speed, in absolute units and as a fraction of the speed of light?b.(5 pts) What is the mean free path?
Solar cell A uses a semiconductor with a band gap of 1.1 eV. Solar cell B...
Solar cell A uses a semiconductor with a band gap of 1.1 eV. Solar cell B uses a semiconductor with a band gap of 2.0 eV. Either cell is thick enough to absorb all the light above its band gap energy. Both cells can work together simultaneously with one on top of the other to operate more efficiently in a small space. But which cell has to be on top (first to receive sunlight) for both to work simultaneously and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT