Question

In: Physics

A quantity of N molecules of an ideal gas initially occupies volume V. The gas then...

A quantity of N molecules of an ideal gas initially occupies volume V. The gas then expands to volume 2V. The number of microscopic states of the gas increases in the expansion. Under which of the following circumstances will this number increases the most? ( i ) if the expansion is reversible and isothermal ( ii ) if the expansion is reversible and adiabatic ( iii ) the number will change by the same amount for both circumstances. Why ?

Solutions

Expert Solution


Related Solutions

A sample of an ideal gas occupies a volume of 25.0 liters at a pressure of...
A sample of an ideal gas occupies a volume of 25.0 liters at a pressure of 1.20 atm and a temperature of 75 degrees C. How many moles of gas are present in the container?
If 5.0 moles of an ideal gas occupies a volume of 9.3 L, what volume will...
If 5.0 moles of an ideal gas occupies a volume of 9.3 L, what volume will 15.0 moles of the gas occupy? A mixture of oxygen, hydrogen, carbon dioxide and methane gases has a total pressure of 1.3 atm. If the partial pressure of hydrogen is 2.4 psi, the partial pressure of carbon dioxide is 110 torr and the partial pressure of methane is 0.22 atm, how many mmHg does the oxygen exert? For the reaction below, how many mL...
A sample of ideal gas at room temperature occupies a volume of 22.0 L at a...
A sample of ideal gas at room temperature occupies a volume of 22.0 L at a pressure of 482 torr . If the pressure changes to 2410 torr , with no change in the temperature or moles of gas, what is the new volume, V2?
1. A sample of ideal gas at room temperature occupies a volume of 38.0 L at...
1. A sample of ideal gas at room temperature occupies a volume of 38.0 L at a pressure of 512 torr . If the pressure changes to 2560 torr , with no change in the temperature or moles of gas, what is the new volume, V2? Express your answer with the appropriate units. V2 = 2. If the volume of the original sample in Part A (P1 = 512 torr , V1 = 38.0 L ) changes to 51.0 L...
An ideal gas at 0.00oC initially occupies 0.150 m3 at a pressure of 2.00 atm. First:...
An ideal gas at 0.00oC initially occupies 0.150 m3 at a pressure of 2.00 atm. First: It is expanded isothermally until its volume triples. Second: it is cooled at a constant volume until its pressure is reduced by half. (a) How many moles of the gas are there (HINT: convert temp to Kelvin) (b) What is the total work done during the two processes.
For an ideal gas, consider the molar volume Vm = (V/n) = Vm(T,P). In other words,...
For an ideal gas, consider the molar volume Vm = (V/n) = Vm(T,P). In other words, the molar volume is a function of temperature and pressure. a) Write the total differential dVm. b) Show that dVm is exact. c) Derive an expression for the differential work dw performed in a reversible process by expansion/compression of the gas. d) Show that dw is inexact. e) What is the thermodynamic significance of having an exact differential?
To derive the ideal-gas equation, we assume that the volume of the gas atoms/molecules can be...
To derive the ideal-gas equation, we assume that the volume of the gas atoms/molecules can be neglected. Given the atomic radius of krypton, 1.1 Å, and knowing that a sphere has a volume of 4πr3/3, calculate the fraction of space that Kr atoms occupy in a sample of krypton at STP. Express your answer using two significant figures.
A monatomic ideal gas is contanined in a cylinder with a moveable piston. Initially the volume...
A monatomic ideal gas is contanined in a cylinder with a moveable piston. Initially the volume of the cylinder is 0.25m^3. The gas is compressed under a constant pressure of 3 Pa until the volume has been halved. Then the volume is held constant while the pressure is doubled. Finally, the gas is allowed to expand isothermally back to its original condition. a)Sketch a P-V diagram for this process. Label the corners 1, 2, 3 with 1 being the beginning...
an elastic container filled with an ideal gas occupies 148 L volume at 85 degree c...
an elastic container filled with an ideal gas occupies 148 L volume at 85 degree c . what would the volumevbe at 15 degree c?
Which of these increases the average kinetic energy of the molecules in an ideal gas? (a) Reducing the volume, keeping P and N constant (b) Increasing the volume, keeping P and N constant
Which of these increases the average kinetic energy of the molecules in an ideal gas? (a) Reducing the volume, keeping P and N constant (b) Increasing the volume, keeping P and N constant (c) Reducing the volume, keeping T and N constant (d) Increasing the pressure, keeping T and V constant (e) Increasing N, keeping V and T constant
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT