Question

In: Math

10- Explain what it means to have a fractal dimension between 1 and 2.

10- Explain what it means to have a fractal dimension between 1 and 2.

Solutions

Expert Solution

Students (and teachers) are often fascinated by the fact that certain geometric images have fractional dimension. The Sierpinski triangle provides an easy way to explain why this must be so.

To explain the concept of fractal dimension, it is necessary to understand what we mean by dimension in the first place. Obviously, a line has dimension 1, a plane dimension 2, and a cube dimension 3. But why is this? It is interesting to see students struggle to enunciate why these facts are true. And then: What is the dimension of the Sierpinski triangle?

They often say that a line has dimension 1 because there is only 1 way to move on a line. Similarly, the plane has dimension 2 because there are 2 directions in which to move. Of course, there really are 2 directions in a line -- backward and forward -- and infinitely many in the plane. What the students really are trying to say is there are 2 linearly independent directions in the plane. Of course, they are right. But the notion of linear independence is quite sophisticated and difficult to articulate. Students often say that the plane is two-dimensional because it has ``two dimensions,'' meaning length and width. Similarly, a cube is three-dimensional because it has ``three dimensions,'' length, width, and height. Again, this is a valid notion, though not expressed in particularly rigorous mathematical language.

Another pitfall occurs when trying to determine the dimension of a curve in the plane or in three-dimensional space. An interesting debate occurs when a teacher suggests that these curves are actually one-dimensional. But they have 2 or 3 dimensions, the students object.

So why is a line one-dimensional and the plane two-dimensional? Note that both of these objects are self-similar. We may break a line segment into 4 self-similar intervals, each with the same length, and ecah of which can be magnified by a factor of 4 to yield the original segment. We can also break a line segment into 7 self-similar pieces, each with magnification factor 7, or 20 self-similar pieces with magnification factor 20. In general, we can break a line segment into N self-similar pieces, each with magnification factor N.

A square is different. We can decompose a square into 4 self-similar sub-squares, and the magnification factor here is 2. Alternatively, we can break the square into 9 self-similar pieces with magnification factor 3, or 25 self-similar pieces with magnification factor 5. Clearly, the square may be broken into N^2 self-similar copies of itself, each of which must be magnified by a factor of N to yield the original figure. See Figure 8. Finally, we can decompose a cube into N^3 self-similar pieces, each of which has magnification factor N.


Figure 8: A square may be broken into N^2 self-similar pieces, each with magnification factor N

Now we see an alternative way to specify the dimension of a self-similar object: The dimension is simply the exponent of the number of self-similar pieces with magnification factor N into which the figure may be broken.

So what is the dimension of the Sierpinski triangle? How do we find the exponent in this case? For this, we need logarithms. Note that, for the square, we have N^2 self-similar pieces, each with magnification factor N. So we can write

Similarly, the dimension of a cube is

Thus, we take as the definition of the fractal dimension of a self-similar object

Now we can compute the dimension of S. For the Sierpinski triangle consists of 3 self-similar pieces, each with magnification factor 2. So the fractal dimension is

so the dimension of S is somewhere between 1 and 2, just as our ``eye'' is telling us.

But wait a moment, S also consists of 9 self-similar pieces with magnification factor 4. No problem -- we have

as before. Similarly, S breaks into 3^N self-similar pieces with magnification factors 2^N, so we again have

Fractal dimension is a measure of how "complicated" a self-similar figure is. In a rough sense, it measures "how many points" lie in a given set. A plane is "larger" than a line, while S sits somewhere in between these two sets.

On the other hand, all three of these sets have the same number of points in the sense that each set is uncountable. Somehow, though, fractal dimension captures the notion of "how large a set is" quite nicely, as we will see below.


Related Solutions

1.Explain the difference between subsidized and unsubsidized student loans. 2.Explain what it means to capitalize the...
1.Explain the difference between subsidized and unsubsidized student loans. 2.Explain what it means to capitalize the student loan. Is this an option for both subsidized and unsubsidized loans? What does it mean if you don't capitalize your student loan? (please use appropriate grammar, complete sentences, and that you explain yourself completely. This will mean there should be at least a couple sentences for each explanation.)
Answer true or false and give justification. 1. k-means is a linear dimension reduction technique. 2....
Answer true or false and give justification. 1. k-means is a linear dimension reduction technique. 2. Kernel PCA is a linear dimension reduction technique. 3. Spectral Clustering is a non-linear dimension reduction technique.
Explain 1) what it means if something is insured on a replacement cost basis; 2) what...
Explain 1) what it means if something is insured on a replacement cost basis; 2) what it means if something is insured on an actual cash value (ACV) basis; and 3) why replacement cost insurance is a violation of the principle of indemnity.
Explain what it means to have autocorrelated error terms.
Explain what it means to have autocorrelated error terms.
Control Flow 1. What is the difference between 10 / 3 and 10 // 3? 2....
Control Flow 1. What is the difference between 10 / 3 and 10 // 3? 2. What is the result of 10 ** 3? 3. Given (x = 1), what will be the value of after we run (x += 2)? 4. How can we round a number? 5. What is the result of float(1)? 6. What is the result of bool(“False”)? 7. What is the result of 10 == “10”? 8. What is the result of “bag” > “apple”?...
1: What is the Uppsala model? 2: What are two (2) examples of the means of...
1: What is the Uppsala model? 2: What are two (2) examples of the means of internationalisation? 3: Why is parochialism a disadvantage when conducting international business?
1- Ethical egoism is both Hedonistic and consequentialistic. Explain this means 2- What is Rachel’s argument...
1- Ethical egoism is both Hedonistic and consequentialistic. Explain this means 2- What is Rachel’s argument against ethical egoism? Be sure to explain what the principle of equal treatment is, and how ethical egoism violates thy principle?
What are the similarities and differences between the 8 dimension of wellness and the Philosophies of...
What are the similarities and differences between the 8 dimension of wellness and the Philosophies of the ancient greeks, Ayurvedic medicine, Tibetan medicine, and traditional Chinese medicine?
1. State the dimension theorem. Explain how it proved.
1. State the dimension theorem. Explain how it proved.
Explain what the term “Invitation to Treat” means and the legal difference between an Invitation to...
Explain what the term “Invitation to Treat” means and the legal difference between an Invitation to Treat and an Offer. In your answer, cite at least one legal authority to support your view. What happens if I accept an offer vs what happens if I accept an Invitation to Treat? (1 mark) Provide two different real-world examples of Invitations to Treat
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT