In: Statistics and Probability
Race | Weight | Systolic BP | 1. Construct confidence intervals for the following situations. You will be prompted to indicate the: critical values, margin of error, confidence limits, and an interpretation. (18 points) | |
Hispanic | 117 | 137 | ||
Caucasian | 107 | 127 | a. Determine the proportion (percentage) of Asians for your point estimate. Then construct a 90% confidence interval for the true proportion of all Asian patients. | |
Caucasian | 101 | 119 | ||
Hispanic | 123 | 143 | Sample Proportion | |
Hispanic | 121 | 141 | Critical Value | |
Caucasian | 157 | 174 | Margin of Error | |
Hispanic | 168 | 188 | Lower Limit | |
Asian | 160 | 180 | Upper Limit | |
African American | 156 | 176 | Interpretation | |
Caucasian | 149 | 175 | ||
Caucasian | 140 | 160 | ||
Asian | 113 | 133 | b. Determine the average weight of all 100 patients for your point estimate. Then construct a 95% confidence interval for the true mean weight of all patients. | |
Caucasian | 133 | 153 | ||
Caucasian | 126 | 152 | Sample Mean | |
Hispanic | 151 | 171 | Standard Deviation | |
Caucasian | 148 | 168 | Critical Value | |
Asian | 163 | 183 | Margin of Error | |
Asian | 128 | 140 | Lower Limit | |
Caucasian | 125 | 145 | Upper Limit | |
Hispanic | 162 | 182 | Interpretation | |
Caucasian | 133 | 153 | ||
African American | 133 | 150 |
a)
x= 4 COUNTIF(A3:A24,"Asian")
n= 22 COUNTA(A3:A24)
Sample Proportion | x/n = | =4/22 | 0.181818 |
Critical Value | z(a/2) | =NORMSINV(1-0.1/2) | 1.644854 |
Margin of Error | z(a/2)*sqrt(p*(1-p)/n) = | =1.645*SQRT(0.1818*(1-0.1818)/22) = | 0.135264 |
Lower Limit | p - z(a/2)*sqrt(p*(1-p)/n) | =0.1818-1.645*SQRT(0.1818*(1-0.1818)/22) = | 0.046536 |
Upper Limit | p + z(a/2)*sqrt(p*(1-p)/n) | =0.1818+1.645*SQRT(0.1818*(1-0.1818)/22) = | 0.317064 |
Interpretation | I am 90% confident that estimated proportion of all Asian patients lie in the interval (0.046, 0.317) |
b)
Sample Mean | 137 | AVERAGE(B3:B24) |
Standard Deviation | 19.56674 | STDEV(B3:B24) |
Critical Value | 1.959964 | NORMSINV(1-0.05/2) = z(A/2) |
Margin of Error | 7.758547 | 1.96*18.56674/SQRT(22) = z(A/2)*sd/sqrt(n) |
Lower Limit | 129.2415 | 137-7.758547 = mean-ME |
Upper Limit | 144.7585 | 137+7.758547 = mean + ME |
Interpretation | I am 95% confident that estimated true mean weight of all patients lie in the interval (129.2415, 144.7585) |