Question

In: Statistics and Probability

Use the following information to construct the confidence intervals specified to estimate μ. a. 95% confidence...

Use the following information to construct the confidence intervals specified to estimate μ. a. 95% confidence for x ¯ = 22, σ = 3.5, and n = 55 b. 98% confidence for x ¯ = 120.6, σ = 28.89, and n = 67 c. 90% confidence for x ¯ = 2.419, σ = 0.888, and n = 29 d. 80% confidence for x ¯ = 56.7, σ = 9.1, N = 500, and n = 47

Solutions

Expert Solution


Related Solutions

Use the following information to construct the confidence intervals specified to estimate μ. a. 95% confidence...
Use the following information to construct the confidence intervals specified to estimate μ. a. 95% confidence for = 26, σ = 4.5, and n = 57 b. 98% confidence for = 115.6, σ = 21.89, and n = 79 c. 90% confidence for = 3.419, σ = 0.876, and n = 31 d. 80% confidence for = 55.7, σ = 14.1, N = 500, and n = 43
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.9 11.6 11.9 12.2 12.5 11.4 12.0 11.7 11.8 12.9 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ?≤ μ ?≤ 95% confidence interval: ?≤ μ? ≤ 99% confidence interval:? ≤ μ ?≤ The point estimate is?
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.2 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 13.2 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 11.9 11.6 11.9 13.0 12.5 11.4 12.0 11.7 11.8 11.9 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.3 11.6 11.9 12.9 12.5 11.4 12.0 11.7 11.8 12.3 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval ≤ μ ≤ enter the upper limit of the 90% confidence interval 95% confidence interval: enter...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.5 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 12.5 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ≤ μ ≤ 95% confidence interval: ≤ μ ≤ 99% confidence interval: ≤ μ ≤ The point estimate is .
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 11.8 11.6 11.9 13.0 12.5 11.4 12.0 11.7 11.8 11.8 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval   95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.0 11.6 11.9 12.4 12.5 11.4 12.0 11.7 11.8 13.0 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.0 11.6 11.9 12.4 12.5 11.4 12.0 11.7 11.8 13.0 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.7 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 13.7 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ≤ μ ≤ 95% confidence interval: ≤ μ ≤ 99% confidence interval: ≤ μ ≤ The point estimate is .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT