Question

In: Physics

A 100 pF capacitor has circular plates of 10.0 cm radius that are 5.0 mm apart...

A 100 pF capacitor has circular plates of 10.0 cm radius that are 5.0 mm apart and have air beteween them. The capacitor is charged by connecting it to a 12.0 V battery through a 1.0 ohms resistor.

a) Determine the current through the plates at t = 0 (when the battery is connected)

b) Determine the current through the plates at t = 60s?

c) Determine the rate at which the electric field between the plates changes at t= 0 and t = 60s

d) Determine the magnetic field between the plates at t = 0 and at t = 60s


Don't really care about the answers as much, but more about what formulas are being used.

Thanks!

Solutions

Expert Solution

regarding RC circuit, we have following formulas that we usually need


1. quation for charge while charging in RC ckt is Q = Q0(1-e^-t/T)
where T = timeconstant = RC
Q0 = initail charge = CV

2.equation for charge while discharging in RC ckt is Q = Q0(e^-t/T)
where T = timeconstant = RC
Q0 = initail charge = CV


3. equation for current while charging/discharging in RC circuit is gievn by
i = i0(e^-t/T)
where T = timeconstant = RC
io = initail current = v/R =


4. equation for volatge in RC ckt while charging is V= V0(1-e^-t/RC)


5. equation for volatge in RC ckt while discharging is V= V0(e^-t/RC)



also with respect to RC ckt



Capacitance C of a parallel palte capacitor is given by C = KeoA/d
where A = area = pi r^2,

e0 = constnat = 8.85*10^-12,
d   = distance between the plates,

K = dieelctric constant (=1 for air)  


Chareg Q = CV where V = Volatge


Energy U = 0.5QV = 0.5 CV^2 = Q^2/2C


eletric field E = V/d





now try urself to solve problem,


Related Solutions

Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a plate separation of 3.6 mm. suppose also that a sinusoidal potential difference with a maximum value of 153 V and a frequency of 60 Hz is applied across the plates: that is, V = (153 V) sin[2 ?(60 Hz)t] Find Bmax, the maximum value of the induced magnetic that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 360 V and a frequency of 120 Hz is applied across the plates; that is V=(360.0 V)sin((2.*π)*(120 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 30.0 mm). Find B(r = 120.0 mm). Find...
A parallel plate capacitor has circular plates of diameter 5 cm and separation 2 mm. The...
A parallel plate capacitor has circular plates of diameter 5 cm and separation 2 mm. The space between the plates is filled with a material of dielectric constant K = 3. The charges on the plates are ± q. The charge is given by q = 27 × 10−9 C. Find: (i) the charge; (ii) the capacitance; (iii) the potential difference between the plates; (iv) the magnitude of the electric field between the plates; (v) the electric energy density between...
A parallel-plate capacitor made of circular plates of radius 65 cm separated by 0.30 cm is...
A parallel-plate capacitor made of circular plates of radius 65 cm separated by 0.30 cm is charged to a potential difference of 800 Volts by a battery. Then a sheet of mylar is pushed between the plates, completely filling the gap between them. How much additional charge flows from the battery to one of the plates when the mylar is inserted?
A capacitor consists of two 4.3-cm-diameter circular plates separated by 1.0 mm. The plates are charged...
A capacitor consists of two 4.3-cm-diameter circular plates separated by 1.0 mm. The plates are charged to 130 V , then the battery is removed. A) How much energy is stored in the capacitor? U_C = __J How much work must be done to pull the plates apart to where the distance between them is 2.0 mm? W = _J
A plane parallel-plate capacitor consists of two identical circular metal plates, each of radius 2.50 cm....
A plane parallel-plate capacitor consists of two identical circular metal plates, each of radius 2.50 cm. the plates separated by 1.00 micrometer. The charge on the capacitor is 3.50 nC. Values of standard constant can be found in your notes or the textbook. For these questions, enter only the numerical values. Do not enter the units, which are already given after the blank. Note that the data is given to 3 significant figures. You MUST enter your answers also to...
An air-filled parallel-plate capacitor has plates of area 2.50 cm separated by 1.00 mm. The capacitor...
An air-filled parallel-plate capacitor has plates of area 2.50 cm2 separated by 1.00 mm. The capacitor is connected to a 24.0-V battery. (a) Find the value of its capacitance._______  pF (b) What is the charge on the capacitor? _______  pC (c) What is the magnitude of the uniform electric field between the plates? _______ V/m
A parallel-plate capacitor with circular plates of radius a separated by a distance d is being...
A parallel-plate capacitor with circular plates of radius a separated by a distance d is being charged though a resistor R and battery with emf E. 1 (a) (5pts.) Make a diagram showing the direction of the induced magnetic field between the plates. (b) (15pts) Show that the magnitude of this induced magnetic field r < a is given by B(r) = µ0 r 2π a2 E R e −t/RC, where r is the distance to the axis of symmetry...
Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above...
Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 1.96 103 N/C exists in the region between them. A particle of mass 2.00 10-16 kg and with a positive charge of 1.09 10-6 C leaves the center of the bottom negative plate with an initial speed of 1.04 105 m/s at an angle of 37.0°...
Water flows through a circular pipe with a constant radius of 5.0 cm. The speed and...
Water flows through a circular pipe with a constant radius of 5.0 cm. The speed and pressure at point A is 2.0 m/s and 2.0 x10^5 Pa respectively. What is the pressure at point B, which is 1.0 m higher than at point A.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT