Question

In: Chemistry

In the Bohr model of the atom, which was supplanted by quantum mechanics, the electron attains stability when the coulombic attraction is balanced by the centrifugal effect of orbiting the nucleus.


In the Bohr model of the atom, which was supplanted by quantum mechanics, the electron attains stability when the coulombic attraction is balanced by the centrifugal effect of orbiting the nucleus. Bohr further proposed that the angular momentum was limited to integral values of ħ. Discuss what is wrong with the Bohr model, by comparing it to the quantum mechanical model, based on y = Rnl(r)Ylm1,(θ,φ). What features do Bohr's model miss?

Solutions

Expert Solution



Related Solutions

3. Prior to quantum mechanics the Bohr Model viewed the atom as having electrons traveling in...
3. Prior to quantum mechanics the Bohr Model viewed the atom as having electrons traveling in circular orbits (shells) about the positively charged nucleus. This model gives a reasonable estimate of the dipole moment of the hydrogen atom if one assumes the radius of the electron orbit about the nucleus is 5.3 x 10-11 m. Using the Bohr Model (a) what is the dipole moment of the hydrogen atom? Now place the hydrogen atom in a magnetic field, B, with...
An electron, with a mass of 9.11×10−28 g is orbiting the nucleus of a hydrogen atom....
An electron, with a mass of 9.11×10−28 g is orbiting the nucleus of a hydrogen atom. A measurement determines the position of the electron to within ±1.63 nm. The velocity of the electron is measured as 6.39×106 m/s. What is the uncertainty in the velocity of the electron?
Early 20th-century physicist Niels Bohr modeled the hydrogen atom as an electron orbiting a proton in...
Early 20th-century physicist Niels Bohr modeled the hydrogen atom as an electron orbiting a proton in one or another well-defined circular orbit. When the electron followed its smallest possible orbit, the atom was said to be in its ground state. (a) When the hydrogen atom is in its ground state, what orbital speed (in m/s) does the Bohr model predict for the electron? m/s (b) When the hydrogen atom is in its ground state, what kinetic energy (in eV) does...
The Bohr model of the hydrogen atom treats electrons as particles that orbit the nucleus at...
The Bohr model of the hydrogen atom treats electrons as particles that orbit the nucleus at a particular radius and with a particular speed.  This model correctly predicts the energy levels of the hydrogen atom, but paints an inaccurate physical picture of the atom.  Explain how the real hydrogen atom differs from the Bohr model.  
Describe the Bohr model and describe the quantum-mechanical model of the electron. What is the advantage...
Describe the Bohr model and describe the quantum-mechanical model of the electron. What is the advantage of each model and what is the major difference between the two models?
In the "Bohr model" of the Hydrogen atom, a single electron is said to have a...
In the "Bohr model" of the Hydrogen atom, a single electron is said to have a circular orbit around the nucleus (in this case consisting of a single proton), analogously to how the Earth orbits the Sun. If the electron orbits at a distance of 1.5�10-10 m, What is the electric force felt by the electron?   What speed must the electron have in order to maintain its orbit? ( in mi/hr and m/s)
In the Bohr model of the hydrogen atom, an electron in the 7th excited state moves...
In the Bohr model of the hydrogen atom, an electron in the 7th excited state moves at a speed of 4.47  104 m/s in a circular path of radius 2.59  10-9 m. What is the effective current associated with this orbiting electron? .....mA
What are the similarities between the Rutherford-Bohr atom and the modern quantum mechanical model? What are...
What are the similarities between the Rutherford-Bohr atom and the modern quantum mechanical model? What are the differences? Why is the Rutherford-Bohr model still useful? In what situations would you use one model over the other? Why?
Describe the Bohr model of the hydrogen atom, and explain how Planck's quantum theory contributed to...
Describe the Bohr model of the hydrogen atom, and explain how Planck's quantum theory contributed to it
Using the Bohr Model of the atom, consider an electron starting in the n=5 state of...
Using the Bohr Model of the atom, consider an electron starting in the n=5 state of a hydrogen atom that emits a photon in the UV range as it drops to lower energy. A) Determine the final state, nf, after the atom emits the photon. B)Calculate the change in energy of the electron. C)Calculate the frequency of the photon emitted. D) Calculate the wavelenght of the photon in nm. Need some help! Thank you in advanced!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT