Question

In: Civil Engineering

A simply supported beam is required to carry a moment of 50 kip-ft across a 25'...

A simply supported beam is required to carry a moment of 50 kip-ft across a 25' span. Assuming that 4 and 8 ksi concrete are available, with a cost difference of 30 percent. Use 60 ksi steel. Beam width is fixed at 12 inches. You can Vary h.

a)design the beam using 2 different concretes - dont forget beta is different.

Solutions

Expert Solution

Please note that minimum depth has been considered to limit deflection and hence the choice of concrete does not affect much in the design of beam sections and reinforcements.


Related Solutions

A simply supported beam with a span of 26 FT is used to carry a service...
A simply supported beam with a span of 26 FT is used to carry a service dead load (including self-weight) of 1.65 KLF and a service live load of 3.3 KLF and is reinforced with 4-#9 bars. The beam has a width b of 14 IN, an effective depth of 24.5 IN., and a height of 27 IN. The material strengths are f’c = 4000 PSI and fy = 60 KSI. The immediate deflection due to live load is limited...
A simply supported 7 ft long solid wooden beam is designed to carry a concentrated load...
A simply supported 7 ft long solid wooden beam is designed to carry a concentrated load P = 600 lbf in the center. The distance between supports is 72 inches. The cross sectional area is 2” (inches) wide and 6” (inches) high. Determine the moment of mass of the beam (lbm), inertia (in4) and deflection (in). This wood has the following material properties: Modulus of elasticity = 2.5 x 106 psi and Density = 40 lbm/ft3.
A 35 ft simply supported beam is loaded with concentrated loads 15 ft in from each...
A 35 ft simply supported beam is loaded with concentrated loads 15 ft in from each support. On one end, the dead load is 8.0 kips and the live load is 18.0 kips. At the other end, the dead load is 4.0 kips and the live load is 9.0 kips. Include the self-weight of the beam in the design. Lateral supports are provided at the supports and the load points. Determine the least-weight W-shape to carry the load. Use A992...
Draw the enveloped shear diagram and enveloped moment diagram for a simply supported beam with a...
Draw the enveloped shear diagram and enveloped moment diagram for a simply supported beam with a uniform dead load of 1.00kip/ft, a uniform live load of 1.50kip/ft and a concentrated live load of 175 kip. the dead load is applied to te entire span. the live load may be positioned anywhere on the span.
A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including...
A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including the beam self-weight and live load of 0.8kip/ft. Determine the minimum required plastic section modulus and select the lightest-weight W-shape to carry the moment. Assume full lateral support and A992 steel. Design by (a) LRFD and (b) ASD
Consider a W30x99 beam (Fy = 60 ksi) that is simply supported, 30 ft. long, and...
Consider a W30x99 beam (Fy = 60 ksi) that is simply supported, 30 ft. long, and subjected to a point load at the midspan. The point service load consists of 60% live load and 40% dead load. Lateral supports exist at the ends only. Design code to comply with: 2016 AISC LRFD. (a) Determine the maximum point service load P for strong-axis bending assuming Cb = 1.0. (b) Redetermine the maximum point service load P for strong-axis bending considering proper...
You are analyzing a 40 FT long simply supported beam (b = 10 IN, d =...
You are analyzing a 40 FT long simply supported beam (b = 10 IN, d = 21.5 IN, h = 24 IN) in an existing building. The dead load on this beam is 1.2 KLF and you are tasked with deciding whether a load of 2 KLF of live load can be applied in addition. Based on the original plans, you think that the compressive strength of the concrete f’c = 3000 PSI and the yield strength of the rebar...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span 5 m when subjected to a uniformly distributed load of magnitude ‘w’ kN/m over the entire span. It was noted that maximum bending moment is equal to 37.5 kNm. Suggest a value for ‘w’ based on the requirements. How it will change the reactions at the supports? What happens to the shear force and bending moment values at the supports and at the center?...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span 5 m when subjected to a uniformly distributed load of magnitude ‘w’ kN/m over the entire span. It was noted that maximum bending moment is equal to 37.5 kNm. Suggest a value for ‘w’ based on the requirements. How it will change the reactions at the supports? What happens to the shear force and bending moment values at the supports and at the center?...
A Simply supported rectangular, tension-reinforced beam is to be designed for dead load of 0.75 k/ft...
A Simply supported rectangular, tension-reinforced beam is to be designed for dead load of 0.75 k/ft plus self weight and service live load of 2.0 k/ft, with a 30 -ft simple span. Material strength will be fy = 60 ksi and fc = 5 ksi for steel and normal weight concrete respectively. Start the design of the beam dimensions using the rules of thumbs in class. The total beam depth, h, must not exceed twice the width. Calculate the required...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT