Question

In: Physics

A cylinder with rotational inertia I1 = 2.6 kg · m^2 rotates clockwise about a vertical...

A cylinder with rotational inertia I1 = 2.6 kg · m^2 rotates clockwise about a vertical axis through its center with angular speed ω1 = 5.8 rad/s. A second cylinder with rotational inertia I2 = 1.3 kg · m2 rotates counterclockwise about the same axis with angular speed ω2 = 6.6 rad/s. If the cylinders couple so they have the same rotational axis, what is the angular speed of the combination (in rad/s)?

What percentage of the original kinetic energy is lost to friction?

Solutions

Expert Solution


Related Solutions

A 0.13 kg meter stick is held perpendicular to a vertical wall by a 2.6 m...
A 0.13 kg meter stick is held perpendicular to a vertical wall by a 2.6 m string going from the wall to the far end of the stick. A. Find the tension of the string B. Find the tension in a 2.0 string.
A hollow sphere of radius 0.230 m, with rotational inertia I = 0.0739 kg·m2 about a...
A hollow sphere of radius 0.230 m, with rotational inertia I = 0.0739 kg·m2 about a line through its center of mass, rolls without slipping up a surface inclined at 22.5° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 18.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 0.840...
A hollow sphere of radius 0.230 m, with rotational inertia I = 0.0323 kg·m2 about a...
A hollow sphere of radius 0.230 m, with rotational inertia I = 0.0323 kg·m2 about a line through its center of mass, rolls without slipping up a surface inclined at 10.2° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 13.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 1.40...
A hollow sphere of radius 0.190 m, with rotational inertia I = 0.0218 kg·m2 about a...
A hollow sphere of radius 0.190 m, with rotational inertia I = 0.0218 kg·m2 about a line through its center of mass, rolls without slipping up a surface inclined at 10.8° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 7.90 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 0.600...
Rotational Inertia –Rolling Kinetic Energy. A solid sphere, a hollow sphere, a hollow cylinder, and a...
Rotational Inertia –Rolling Kinetic Energy. A solid sphere, a hollow sphere, a hollow cylinder, and a solid cylinder, all of with same mass (M=0.25 kg ) and radius(R= 0.20 m) – are placed at the top of an incline at height (h= 1.5 m ). All the objects are released from rest at the same moment to roll down without slipping. Hint: search for the rotational inertia formula for each of the rolling object first. Then calculate each of them...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
A mechanical aim rotates in the vertical plan about point O. The slider P (m =...
A mechanical aim rotates in the vertical plan about point O. The slider P (m = 2 kg) is drawn toward O with a constant speed (?̇) of 0.5 m/s through the rough slot (friction coefficient µ = 0.1) by pulling on the free end E of the cord. At the instant when r = 0.25 m, the arm is rotating with a constant speed (?̇) of 10 rad/s in the clockwise direction. When the slider is oriented at an...
A wheel 2.25 m in diameter lies in a vertical plane and rotates about its central...
A wheel 2.25 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.30 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3
A) Estimate the rotational inertia of a 60-kg ice skater by considering her body to be...
A) Estimate the rotational inertia of a 60-kg ice skater by considering her body to be a cylinder. Assume she's holding her arms tight to her torso, so they don't contribute significantly to her rotational inertia. Suppose that the distance from the center of rotation to the shoulders is 0.2 mm. B) Estimate the rotational inertia if she extends her arms fully. Suppose that the arm span of the ice skater is 1.6 mm and the arms make up 15...
A solid wheel with mass M, radius R, and rotational inertia MR2/2, rolls without sliding on...
A solid wheel with mass M, radius R, and rotational inertia MR2/2, rolls without sliding on a horizontal surface. A horizontal force F is applied to the axle and the center of mass has an acceleration a. The magnitudes of the applied force F and the frictional force f of the surface, respectively, are: F=Ma,f=0 F=Ma,f=Ma/2 F=2Ma,f=Ma F=2Ma,f=Ma/2 F =3Ma/2, f =Ma/2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT