Question

In: Chemistry

Consider the following equilibrium: Fe(OH)3(s) D Fe3+(aq) + 3OH–(aq) with Ksp = 1.6 x 10-39. The...

Consider the following equilibrium: Fe(OH)3(s) D Fe3+(aq) + 3OH(aq) with Ksp = 1.6 x 10-39. The activity coefficients for Fe3+(aq) and 3OH(aq) are 0.445 and 0.900 in a solution with an ionic strength of 0.01M. The pH of the solution was 11.

a. Calculate [OH] in the solution.

b. Use the activity coefficients in order to calculate [Fe3+] in the solution.

Solutions

Expert Solution

Please like the answer.

Please comment for any doubts.

Thank you.


Related Solutions

Consider the following equilibrium: Fe(OH)3(s) D Fe3+(aq) + 3OH–(aq) with Ksp = 1.6 x 10-39. The...
Consider the following equilibrium: Fe(OH)3(s) D Fe3+(aq) + 3OH–(aq) with Ksp = 1.6 x 10-39. The activity coefficients for Fe3+(aq) and 3OH–(aq) are 0.445 and 0.900 in a solution with an ionic strength of 0.01M. The pH of the solution was 11. a. Calculate [OH–] in the solution. b. Use the activity coefficients in order to calculate [Fe3+] in the solution.
a) Determine the molar solubility of Fe(OH)3 in pure water. Ksp = 2.79 × 10-39 for...
a) Determine the molar solubility of Fe(OH)3 in pure water. Ksp = 2.79 × 10-39 for Fe(OH)3. (b) Determine the molar solubility of Fe(OH)3 if the pH of the solution is 8.0. (c) Determine the molar solubility of Fe(OH)3 if the pH of the solution is 2.0.
FeCl3(aq) + 3 NaOH (aq) ---- Fe(OH)3(s) + 3 NaCl(aq) Is this a redox reaction in...
FeCl3(aq) + 3 NaOH (aq) ---- Fe(OH)3(s) + 3 NaCl(aq) Is this a redox reaction in the reaction above? Explain.
Consider the following system in equilibrium: CuCO3 (s) ⇌ Cu2+ (aq) + CO3 2- (aq) Ksp...
Consider the following system in equilibrium: CuCO3 (s) ⇌ Cu2+ (aq) + CO3 2- (aq) Ksp = 1.4 x10-10 CO2 (g) ⇌ CO2 (aq) K1 = 3.4 x10-2 CO2 (aq) + H2O (l) ⇌ HCO3 - (aq) + H+ (aq) K2 = 4.7 x10-7 HCO3 - (aq) ⇌ CO3 2- (aq) + H+ (aq) K3 = 5.1 x10-11 At equilibrium, the pH of the solution is equal to 5.745 when the system is saturated with CuCO3. In standard conditions (pressure...
Consider the following system in equilibrium: CuCO3 (s) ⇌ Cu2+ (aq) + CO3 2- (aq) Ksp...
Consider the following system in equilibrium: CuCO3 (s) ⇌ Cu2+ (aq) + CO3 2- (aq) Ksp = 1.4 x10-10 CO2 (g) ⇌ CO2 (aq) K1 = 3.4 x10-2 CO2 (aq) + H2O (l) ⇌ HCO3 - (aq) + H+ (aq) K2 = 4.7 x10-7 HCO3 - (aq) ⇌ CO3 2- (aq) + H+ (aq) K3 = 5.1 x10-11 At equilibrium, the pH of the solution is equal to 5.745 when the system is saturated with CuCO3. In standard conditions (pressure...
Balance redox reaction in basic solution: Fe(OH)2(s) + MnO4-(aq) -> MnO2 (s) + Fe(OH)3
Balance redox reaction in basic solution: Fe(OH)2(s) + MnO4-(aq) -> MnO2 (s) + Fe(OH)3
What is the Ksp in terms of the molar solubility s for the substance Fe (OH)3?...
What is the Ksp in terms of the molar solubility s for the substance Fe (OH)3? A.s B.s2 C.2s3 D. 4s3
Consider the following reaction : Fe3+ (aq) + SCN- (aq) ---> Fe(SCN)2+ (aq) Starting with 4.00...
Consider the following reaction : Fe3+ (aq) + SCN- (aq) ---> Fe(SCN)2+ (aq) Starting with 4.00 mL of .200 M Fe3+ (aq) in a cuvette, 0.10 mL increments of 0.00100 M SCN- (aq) will be added. Assume that because [Fe3+ (aq)] >> [SCN- (aq)], the [Fe(SCN)2+] concentration can be calculated from the limiting reagent, SCN-. Calculate [Fe(SCN)2+]. Volume .00100 M KSCN mL [Fe(SCN)2+] (M) .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.2×10−3 M...
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.2×10−3 M and an initial [SCN−] of 7.8×10−4 M . At equilibrium, [FeSCN2+]= 1.7×10−4 M .Calculate the value of the equilibrium constant (Kc).
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.1×10−3 M...
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.1×10−3 M and an initial [SCN−] of 8.2×10−4 M. At equilibrium, [FeSCN2+]= 1.8×10−4 M . Part A Calculate the value of the equilibrium constant (Kc). Express your answer using two significant figures. Kc=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT