Question

In: Advanced Math

State the condition on the derivative f' that can be used to show that a function f is increasing.


State the condition on the derivative f' that can be used to show that a function f is increasing. 

b Define the function arctan. 

c Explain how one, starting from the definition of arctan, may derive an expression for the derivative of this function, and carry out that calculation.

Solutions

Expert Solution

a) The derivative of a function may be used to determine whether the function is increasing or decreasing on any intervals in its domain. If f′(x) > 0 at each point in an interval I, then the function is said to be increasing on I.

b) Every mathematical function has an inverse. Even simple operations such as addition and multiplication have inverses - subtraction and division. The arctan is the inverse of the tangent function and is used to compute the angle measure from the tangent ratio of a right triangle, designated by the formula:

tan = opposite / adjacent

The term 'arc' is used because when measuring an angle in radians, the arc length of a portion of a circle bisected by an angle (with the vertex at the center of the circle) equals the angle measure. The radian is the standard unit of measurement for an angle and is equal to approximately 57 degrees. It is based on the radius of a circle.

We can use arctan to determine an angle measure when the sides opposite and side adjacent angles are known.The arctan has practical application in architecture, buildings, landscaping, physics and engineering.

C) I am attaching a picture fir better understanding.


Related Solutions

Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show that there exists a point c ∈ (0, 2π) such that cos(c)f(c) + sin(c)f'(c) = 2 sin(c).
Given the first derivative of a function is f'(×)=2x^2-8x+10 , find the intervals of increasing and...
Given the first derivative of a function is f'(×)=2x^2-8x+10 , find the intervals of increasing and decreasing behavior of the function.
1. Use the derivative function, f'(x)f′(x), to determine where the function f(x)=−2x^2+14x−8 is increasing. 2.Use the...
1. Use the derivative function, f'(x)f′(x), to determine where the function f(x)=−2x^2+14x−8 is increasing. 2.Use the derivative function f'(x)f′(x) to determine where the function f(x)=2x^3−27x^2+108x+13 is increasing.   3.Use the derivative function f'(x)f′(x) to determine where the function f(x)=2x^3−27x^2+108x−12 is decreasing. 4.Find each value of the function f(x)=−x^3+12x+9 where the line tangent to the graph is horizontal. x=
Part A. If a function f has a derivative at x not. then f is continuous...
Part A. If a function f has a derivative at x not. then f is continuous at x not. (How do you get the converse?) Part B. 1) There exist an arbitrary x for all y (x+y=0). Is false but why? 2) For all x there exists a unique y (y=x^2) Is true but why? 3) For all x there exist a unique y (y^2=x) Is true but why?
1) The graph of the derivative f ' of a continuous function f is shown. (Assume...
1) The graph of the derivative f ' of a continuous function f is shown. (Assume the function f is defined only for 0 < x < ∞.) (a) On what interval(s) is f increasing? (2a) On what interval(s) is f decreasing? (b) At what value(s) of x does f have a local maximum? (2b) At what value(s) of x does f have a local minimum? x=? (c) On what interval(s) is f concave upward? (2c) On what interval(s) is...
A) Find the derivative of the function f by using the rules of differentiation. f(x) =...
A) Find the derivative of the function f by using the rules of differentiation. f(x) = 380 B)Find the derivative of the function f by using the rules of differentiation. f(x) = x0.8 C) Find the derivative of the function f by using the rules of differentiation. D)Find the derivative of the function. f(u) = 10 u E)Find the derivative of the function f by using the rules of differentiation. f(x) = 9x3 - 2x2 + 1 u u
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x +...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x + 1)(x + 5). Determine the intervals of x for which the function of f is increasing and decreasing Explain why a positive value for f" (x) means the graph f(x) is increasing For f(x) = 2x2- − 3x2 − 12x + 21, find where f'(x) = 0, and the intervals on which the function increases and decreases Determine the values of a, b, and...
Question 1 Let f be a function for which the first derivative is f ' (x)...
Question 1 Let f be a function for which the first derivative is f ' (x) = 2x 2 - 5 / x2 for x > 0, f(1) = 7 and f(5) = 11. Show work for all question. a). Show that f satisfies the hypotheses of the Mean Value Theorem on [1, 5] b)Find the value(s) of c on (1, 5) that satisfyies the conclusion of the Mean Value Theorem. Question 2 Let f(x) = x 3 − 3x...
For the following exercises, use the definition of derivative to calculate the derivative of each function. f(x) = 5π
For the following exercises, use the definition of derivative to calculate the derivative of each function.f(x) = 5π
1. Explain how the first derivative test of a function determines where the function is increasing and decreasing.
  1. Explain how the first derivative test of a function determines where the function is increasing and decreasing.2. Explain how to apply the second derivative test.3. What is an inflection point?4. Why are special methods such as L'Hopital's Rules, needed to evaluate indeterminate forms?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT