Question

In: Physics

1. A 45-kg snowboarder starts at rest and slides down a frictionless 25m-high slope. (a) What...

1. A 45-kg snowboarder starts at rest and slides down a frictionless 25m-high slope. (a) What is the skier’s velocity at the bottom of the slope?

b). The skier collides with a 68-kg ski patroller who is at rest at the bottom of the slope. What is their velocity immediately after the collision?

Solutions

Expert Solution


Related Solutions

A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
A 4.5 kg box slides down a 4.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 4.2-m -high frictionless hill, starting from rest, across a 2.3-m -wide horizontal surface, then hits a horizontal spring with spring constant 480 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.3-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.26. What is the speed of the box just before hitting the...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.455. After sliding down a distance d = 5.80 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.645 kg at point . (a) Find the speed of m1 at point  just before...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made to collide with a second cart of mass m2 = 24 kg which then heads into a vertical loop of radius 0.25 m (a) Determine the height h at which cart #1 would need to start from to make sure that cart #2 completes the loop without leaving the track. Assume an elastic collision. (b) Find the height needed if instead the more massive...
In the figure, a small block of mass m = 0.121 kg slides down a frictionless...
In the figure, a small block of mass m = 0.121 kg slides down a frictionless surface from an initial height of h = 0.850 m and then sticks to a uniform vertical rod of mass M = 0.879 kg and length L = 1.83 m. The rod pivots about point O through an angle θ before momentarily stopping. Find θ (in degrees).
A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If...
A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If the coefficient of friction is 0.075, what is the ski's speed at the base of the incline? B)If the snow is level at the foot of the incline and has the same coefficient of friction, how far will the ski travel along the level? Use energy methods.
A 115 kg seal at an amusement park slides from rest down a ramp into the...
A 115 kg seal at an amusement park slides from rest down a ramp into the pool below. The top of the ramp is 2.00 m higher than the surface of the water and the ramp is inclined at an angle of 26.5 ∘ above the horizontal. Part A Part complete If the seal reaches the water with a speed of 4.55 m/s, what is the work done by kinetic friction? Express your answer using three significant figures. Part B...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle 13.8o with a constant velocity. It is then projected up the same plane with an initial speed 4.05 m/s. How far up the incline will the block move before coming to rest?
A 2.2 kg cart slides eastward down a frictionless ramp from a height of 1.5 m...
A 2.2 kg cart slides eastward down a frictionless ramp from a height of 1.5 m and then onto a horizontal surface where it has a head-on elastic collision with a stationary 3.0 kg cart cushioned by an ideal Hooke’s Law spring. The maximum compression of the spring during the collision is 2.0 cm. [10 marks] a) Determine the velocity of the cart 1 just before the collision. [1 mark] b) At the point of maximum compression determine the velocity...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT