Question

In: Physics

1. A skier of mass 80 kg starts from rest and slides down a frictionless slope...

1. A skier of mass 80 kg starts from rest and slides down a frictionless slope of length 35 m that is

inclined at an angle of 30 degrees with the horizontal. Ignore air resistance.


a. Calculate the work done by gravity on the skier, and the work done by the normal force

on the skier.


b. If the slope is not frictionless so that the skier has a final velocity of 25 m/s, calculate the

work done by gravity, the work done by the normal force, the work done by friction, the

force of friction, and the coefficient of kinetic friction.


Solutions

Expert Solution


Related Solutions

A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
1. A 45-kg snowboarder starts at rest and slides down a frictionless 25m-high slope. (a) What...
1. A 45-kg snowboarder starts at rest and slides down a frictionless 25m-high slope. (a) What is the skier’s velocity at the bottom of the slope? b). The skier collides with a 68-kg ski patroller who is at rest at the bottom of the slope. What is their velocity immediately after the collision?
A skier with a mass of 75kg starts from rest at the top of a slope...
A skier with a mass of 75kg starts from rest at the top of a slope which is 110m tall and skis to the bottom. Hint: you must use conservation of energy to solve both parts of this problem. a. What is the skier’s speed at the bottom of the slope if there is no friction? b. If the speed of the skier at the bottom of the slope is actually 20m/s, how much work is done by friction?
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.455. After sliding down a distance d = 5.80 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.645 kg at point . (a) Find the speed of m1 at point  just before...
A skier (m = 60 kg) initially at rest skis down a (frictionless) hill from an...
A skier (m = 60 kg) initially at rest skis down a (frictionless) hill from an altitude of 75 m. When she reaches the bottom (a flat horizontal surface with µk = 0.2) she slows down until she comes to a stop. (a) What is her speed when she reaches the bottom of the hill? (b) Over what distance at the bottom does she come to a stop?
1.A 65.0 kg object slides down a 30o angle slope from rest at a height of...
1.A 65.0 kg object slides down a 30o angle slope from rest at a height of 15.0 m. The coefficient of kinetic friction between the object and the slope surface is 0.15. (A) What is the object
A skier of mass 75kg starts from rest at the top of a friction less incline...
A skier of mass 75kg starts from rest at the top of a friction less incline that is 20.0 m in height. As soon as she touches the bottom of the incline, she encounters a horizontal surface that is 1000 m long and the skier eventually comes to rest. The coefficient of kinetic friction between skier and snow is 0.205. Find the distance the skier covers before coming to rest. Show all work.
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made to collide with a second cart of mass m2 = 24 kg which then heads into a vertical loop of radius 0.25 m (a) Determine the height h at which cart #1 would need to start from to make sure that cart #2 completes the loop without leaving the track. Assume an elastic collision. (b) Find the height needed if instead the more massive...
In the figure, a small block of mass m = 0.121 kg slides down a frictionless...
In the figure, a small block of mass m = 0.121 kg slides down a frictionless surface from an initial height of h = 0.850 m and then sticks to a uniform vertical rod of mass M = 0.879 kg and length L = 1.83 m. The rod pivots about point O through an angle θ before momentarily stopping. Find θ (in degrees).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT