Question

In: Chemistry

Reaction enthalpy for ethanol oxidation, C2H5OH+3O2 -> 2CO2 + 3H2O is 1257 kJ/mole. Energy content per...

Reaction enthalpy for ethanol oxidation, C2H5OH+3O2 -> 2CO2 + 3H2O is 1257 kJ/mole.

Energy content per mol fuel ______kJ                     Energy content per gram fuel = ____________ kJ

Energy released per mol CO2 formed ________ kJ   Energy released per mol O2 consumed= ______ kJ

Moles of CO2 formed per 1000 kJ energy released ___________

Solutions

Expert Solution


Related Solutions

C2H5OH + 3O2 → 2CO2 + 3H2O How many grams of carbon dioxide are produced when...
C2H5OH + 3O2 → 2CO2 + 3H2O How many grams of carbon dioxide are produced when 390. kJ of energy are used in the following reaction?
Express the equilibrium constant for the combustion of ethanol in the balanced chemical equation. C2H5OH(g)+3O2(g)⇌2CO2(g)+3H2O(g) Express...
Express the equilibrium constant for the combustion of ethanol in the balanced chemical equation. C2H5OH(g)+3O2(g)⇌2CO2(g)+3H2O(g) Express the equilibrium constant for the combustion of ethanol in the balanced chemical equation. K=[CO2]2[C2H5OH][O2]3 K=[C2H5OH][O2][CO2][H2O] K=[CO2][H2O][C2H5OH][O2] K=[CO2]2[H2O]3[C2H5OH][O2]3
Consider the following balanced chemical equation: C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l) a. How many...
Consider the following balanced chemical equation: C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l) a. How many moles of CO2 form when 2.18 moles of C2H5OH react? moles CO2 b. How many moles of H2O form from the reaction of 2.18 moles of C2H5OH? moles H2O c. How many moles of CO2 form when 2.18 moles of H2O form? moles CO2 d. How many molecules of CO2 form when 2.18 moles of H2O form? × 10(Click to select)21222324 molecules CO2
Calculate the enthalpy of oxidation per mole for N2 and for C2H2 (the enthalpy of formation...
Calculate the enthalpy of oxidation per mole for N2 and for C2H2 (the enthalpy of formation of N2O5(g) is 11.30 kJ/mol).
Part B Calculate the enthalpy of the reaction 4B(s)+3O2(g)→2B2O3(s) given the following pertinent information: B2O3(s)+3H2O(g)→3O2(g)+B2H6(g),    ΔH∘A=+2035 kJ...
Part B Calculate the enthalpy of the reaction 4B(s)+3O2(g)→2B2O3(s) given the following pertinent information: B2O3(s)+3H2O(g)→3O2(g)+B2H6(g),    ΔH∘A=+2035 kJ 2B(s)+3H2(g)→B2H6(g),                            ΔH∘B=+36 kJ H2(g)+12O2(g)→H2O(l),                ΔH∘C=−285 kJ H2O(l)→H2O(g),                                          ΔH∘D=+44 kJ Express your answer with the appropriate units. Hints
Consider this reaction: 2CH3OH(l) + 3O2(g)2O(l) + 2CO2(g) H = –1452.8 kJ/mol a.Is this reaction endothermic...
Consider this reaction: 2CH3OH(l) + 3O2(g)2O(l) + 2CO2(g) H = –1452.8 kJ/mol a.Is this reaction endothermic or exothermic? b.H if the equation is multiplied throughout by 2? c.H if the direction of the reaction is reversed so that the products become the reactants and vice versa? What is the value of ∆H if water vapor instead of liquid water is formed as the product?
1. How many grams of ethanol, C2H5OH, can be boiled with 863.7 kJ of heat energy?...
1. How many grams of ethanol, C2H5OH, can be boiled with 863.7 kJ of heat energy? The molar heat of vaporization of ethanol is 38.6 kJ/mol. Answer in g. 2. How much heat energy is required to boil 12.7 g of ammonia, NH3? The molar heat of vaporization of ammonia is 23.4kJ/mol. Answer in kJ
Calculate the total binding energy in kJ per mole nuclide and in kJ/mol nucleons for the...
Calculate the total binding energy in kJ per mole nuclide and in kJ/mol nucleons for the following nuclides, using the data given below. Nuclide Total binding energy kJ/mol nuclide kJ/mol nucleons (a) 12 6 C (b) 17 8 O (c) 234 90 Th Particle or atom Mass (u) proton 1.00728 neutron 1.00866 electron 0.00055 12 6 C 12.00000 17 8 O 16.99913 234 90 Th 234.04360 1 u = 1.66054×10-27 kg
Ethanol melts at -114.0 ∘C. The enthalpy of fusion is 5.02 kJ/mol and the enthalpy of...
Ethanol melts at -114.0 ∘C. The enthalpy of fusion is 5.02 kJ/mol and the enthalpy of vaporization is 38.6 kJ/mol. The specific heats of solid and liquid ethanol are 0.970 J/g⋅K and 2.30 J/g⋅K, respectively. How much heat is needed to convert 39.0 g of solid ethanol at -160.0 ∘C to liquid ethanol at -35.0 ∘C ? I am really confused on this, any help would be greatly appreciated. Thanks!
Calculate the enthalpy of the reaction 4B(s)+3O2(g)→2B2O3(s) given the following pertinent information: B2O3(s)+3H2O(g)→3O2(g)+B2H6(g), ΔH∘A=+2035 kJ 2B(s)+3H2(g)→B2H6(g),...
Calculate the enthalpy of the reaction 4B(s)+3O2(g)→2B2O3(s) given the following pertinent information: B2O3(s)+3H2O(g)→3O2(g)+B2H6(g), ΔH∘A=+2035 kJ 2B(s)+3H2(g)→B2H6(g), ΔH∘B=+36 kJ H2(g)+12O2(g)→H2O(l), ΔH∘C=−285 kJ H2O(l)→H2O(g), ΔH∘D=+44 kJ
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT