Question

In: Physics

An 7.90-cm-diameter, 310 g solid sphere is released from rest at the top of a 1.60-m-long,...

An 7.90-cm-diameter, 310 g solid sphere is released from rest at the top of a 1.60-m-long, 17.0 ∘ incline. It rolls, without slipping, to the bottom.

What is the sphere's angular velocity at the bottom of the incline?

What fraction of its kinetic energy is rotational?

Solutions

Expert Solution


Related Solutions

A hollow ball and a solid sphere are released from rest and roll down an inclined...
A hollow ball and a solid sphere are released from rest and roll down an inclined plane. Both have a mass of 1 kg, a radius of 5 cm, and experience a torque of 0.01 N m. Assume both balls roll without slipping. What is the difference in their linear velocities after the balls have both lost 4 m of elevation? I’d like you to use energy to solve this problem.
1. A 0.750 kg hollow sphere with a diameter of 25 cm diameter starts from rest...
1. A 0.750 kg hollow sphere with a diameter of 25 cm diameter starts from rest at the top of a 65 cm tall incline. There is just enough friction on the incline to make the sphere roll instead of slide. (a) What types of energy does the sphere have at the top? at the bottom? (b) What is the moment of inertia of the sphere? (c) What is the velocity of the sphere when it reaches the bottom of...
A sphere of radius r0 = 23.0 cm and mass m = 1.20kg starts from rest...
A sphere of radius r0 = 23.0 cm and mass m = 1.20kg starts from rest and rolls without slipping down a 36.0 ∘ incline that is 13.0 m long. a) Calculate its translational speed when it reaches the bottom. b) Calculate its rotational speed when it reaches the bottom. c) What is the ratio of translational to rotational kinetic energy at the bottom?
A ball of mass M = 2 Kg is released at rest(V0=0) from the top of...
A ball of mass M = 2 Kg is released at rest(V0=0) from the top of a building at a height H=d= 125 m above the ground. There is no air resistance. Take g=10m/s2. The ball's final kinetic energy just before it hits the ground is ___ Joules 25,000 20 2,500 250 A car of mass M=1000 Kg moving initially at Vo= 30 m/s stops (Vf=0)after hitting a cement wall. The car spends a time  t=0.015 seconds from the moment it...
A 1.60 m cylindrical rod of diameter 0.550 cm is connected to a power supply that...
A 1.60 m cylindrical rod of diameter 0.550 cm is connected to a power supply that maintains a constant potential difference of 17.0 V across its ends, while an ammeter measures the current through it. You observe that at room temperature (20.0 ∘ C ) the ammeter reads 18.8 A , while at 92.0 ∘C it reads 17.3 A . You can ignore any thermal expansion of the rod. Part A Find the resistivity and for the material of the...
Consider a solid sphere of mass m and radius r being released down a ramp from...
Consider a solid sphere of mass m and radius r being released down a ramp from a height h (i.e., its center of mass is initially a height h above the ground). It rolls without slipping and passes through a vertical loop of radius R. a. Determine the moment of inertia of the solid sphere. You must carry out the integration and it’s not sufficient just to write out 2/5mr^2 b. Use energy conservation to show that the tangential and...
A small box is released from rest at the top of a frictionless ramp that is...
A small box is released from rest at the top of a frictionless ramp that is inclined at 36.9 0 above the horizontal. How long does it take the box to travel 8.00 m to the bottom of the incline?
A hollow sphere is released from the top of an inclined plane of inclination theta. (a)...
A hollow sphere is released from the top of an inclined plane of inclination theta. (a) What should be the minimum coefficient of friction between the plane and the sphere to prevent it from sliding? (b) Find the kinetic energy of the sphere as it moves down a length l on the incline if the friction coefficient is half the value calculated in part (a). Please show all steps
A pendulum 2.10 m long is released (from rest) at an angle θ0=30.0∘. B. Determine the...
A pendulum 2.10 m long is released (from rest) at an angle θ0=30.0∘. B. Determine the speed of the 50.0 g bob at θ=15.0∘. C.Determine the speed of the 50.0 g bob at θ=−15.0∘ (i.e., on the opposite side). D.Determine the tension in the cord at the lowest point (θ=0). E. Determine the tension in the cord at the θ=15∘. F. Determine the tension in the cord at θ=−15.0∘.
A 23.0-kg child on a 4.00-m-long swing is released from rest when the ropes of the...
A 23.0-kg child on a 4.00-m-long swing is released from rest when the ropes of the swing make an angle of 25.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. m/s (b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction? J
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT