In: Advanced Math
. Recall from the previous page that for each pair a, b with a ∈ R − {0} and b ∈ R, we have a bijection fa,b : R → R where fa,b(x) = ax + b for each x ∈ R. (b) Let F = {fa,b | a ∈ R − {0}, b ∈ R}. Prove that the set F with the operation of composition of functions is a non-abelian group. You may assume that function composition is associative