Question

In: Physics

An 18-kg sled starts up a 36 ∘ incline with a speed of 2.2 m/s ....

An 18-kg sled starts up a 36 ∘ incline with a speed of 2.2 m/s . The coefficient of kinetic friction is μk= 0.25.

How far up the incline does the sled travel?

What condition must you put on the coefficient of static friction if the sled is not to get stuck at the point determined in Part A?

If the sled slides back down, what is its speed when it returns to its starting point?

Solutions

Expert Solution

Solution:

Lets use the Energy equations

our equation will write as

where,

  • v= initial velocity
  • m = mass of sled
  • F = friction force
  • d = distance friction force acts
  • h = the height up the ramp working against the weight or dsin(30)
  • F is Fnu or the normal force times the coefficient of friction

Initial kinetic energy = (Potential energy increase) + (work against friction)

Given data

=360

g=9.81m/s2

μ= 0.25

v=2.2m/s

cancel 'm 'on both sides

  • coefficient of static friction cannot generate a force greater than mgsin(36)0

To make sure it slides back down the incline,the downward weight component must exceed the maximum possible static friction force

coefficient of static friction cannot generate a force greater than mgsin(36)

conservation of energy equations again

find v value

we know that d=0.312m

The sled has kinetic potential while it began the adventure.Of this partly became into misplaced in friction & partly switched over to capacity potential via distinctive function of its place above floor.


Related Solutions

A crate of mass 10.3 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed of 1.43 m/s. The pulling force is 93.0 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.97 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy (related to thermal energy, having the opposite...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.42 m/s. The pulling force is 96N parallel to the incline, which makes an angle of 20.4 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. A) how much work is done by the gravitational force on the crate? B) determine the increase in internal energy of the crate-incline system owing to friction? C) how...
Gayle runs at a speed of 4.17 m/s and dives on a sled, which is initially...
Gayle runs at a speed of 4.17 m/s and dives on a sled, which is initially at rest on the top of a frictionless snow-covered hill. After she has descended a vertical distance of 4.52 m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 17.3 m? Gayle's mass is 52.8 kg, the sled has...
Gayle runs at a speed of 3.30 m/s and dives on a sled, initially at rest...
Gayle runs at a speed of 3.30 m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After she has descended a vertical distance of 5.00 m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15.0 m? Gayle's mass is 47.0 kg, the sled has a mass...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a ramp with an angle of θ = 45° from the horizontal. The coefficients of friction between the box and ramp are μs = .7 and μk = .5 a) How far up the ramp does the box go before it comes to rest? b) Does it start to slide down the ramp after it gets to its maximum distance up the ramp?
A 7.50-kg box slides up a 25.0o ramp with an initial speed of 7.50 m/s. The...
A 7.50-kg box slides up a 25.0o ramp with an initial speed of 7.50 m/s. The coefficient of kinetic friction between the box and ramp is 0.333. You wish to calculate the distance the box will move up the ramp before coming to a stop using mechanical-energy (NOT force-motion or the work-kinetic energy.) a. Write the correct equation for solving the problem, and then fully justify its use. (Start by identifying the objects in the system [only the required objects]...
object m1 = 1.50 kg starts at an initial height h1i = 0.290 m and speed...
object m1 = 1.50 kg starts at an initial height h1i = 0.290 m and speed v1i = 4.00 m/s, swings downward and strikes (in an elastic collision) object m2 = 4.40 kg which is initially at rest. Determine the height (in m) to which each ball swings after the collision (ignoring air resistance). m1= m m2= m
A 200 kg sled that is 40m long is sliding eastward at a speed of 5...
A 200 kg sled that is 40m long is sliding eastward at a speed of 5 m/s relative to the icy ground below. A 60 kg human is standing at the eastern edge of the sled and suddenly begins running westward at a constant speed of 10 m/s relative to the center of mass of the system that consists of the sled and the human. 1) Explain why the sled speed increase after the human starts to run. 2) Determine...
10 kg crate is pulled 4.9 m up a 34 degree incline by a rope angled...
10 kg crate is pulled 4.9 m up a 34 degree incline by a rope angled 16 degree above the incline. The tension in the rope is 125 N, and the crate's coefficient of kinetic friction on the incline is 0.26. How much work is done by: a. Tension? J b. Gravity? J c. Normal Force? J d. What is the increase in thermal energy of the crate and incline? J
A 7.1 kg block with a speed of 3.3 m/s collides with a 14.2 kg block...
A 7.1 kg block with a speed of 3.3 m/s collides with a 14.2 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 14.2 kg block is observed to be traveling in the original direction with a speed of 2.8 m/s. (a) What is the velocity of the 7.1 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT