Question

In: Physics

A 4.26-kg block starts up a 33.0˚ incline at 7.81 m/s. (a) How far will it...

A 4.26-kg block starts up a 33.0˚ incline at 7.81 m/s. (a) How far will it slide if it loses 34.6 J of mechanical energy due to friction? (b) What is the coefficient of kinetic friction between the block and the incline

Solutions

Expert Solution


Related Solutions

An 18-kg sled starts up a 36 ∘ incline with a speed of 2.2 m/s ....
An 18-kg sled starts up a 36 ∘ incline with a speed of 2.2 m/s . The coefficient of kinetic friction is μk= 0.25. How far up the incline does the sled travel? What condition must you put on the coefficient of static friction if the sled is not to get stuck at the point determined in Part A? If the sled slides back down, what is its speed when it returns to its starting point?
A 2.9 kg block is projected at 5.4 m/s up a plane that is inclined at...
A 2.9 kg block is projected at 5.4 m/s up a plane that is inclined at 40∘ with the horizontal a How far up along the plane does the block go if the coefficient of kinetic fraction between the block and the plane is 0.375? b..How far up the plane does the block go if If the block then slides back down the plane, what is its speed when it returns to its original projection point?the plane is frictionless? Give...
A block of 70 kg  kg mass m climbs an incline plane which is making 85 degrees...
A block of 70 kg  kg mass m climbs an incline plane which is making 85 degrees with the horizontal with an initial velocity 30 m/s . How long time later does the block return to its initial position If the static, kinetic friction constant is 0.2 and gravity is 9.8m/s2? Please write explicit solution
A 7.1 kg block with a speed of 3.3 m/s collides with a 14.2 kg block...
A 7.1 kg block with a speed of 3.3 m/s collides with a 14.2 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 14.2 kg block is observed to be traveling in the original direction with a speed of 2.8 m/s. (a) What is the velocity of the 7.1 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 7.3 kg block with a speed of 4.8 m/s collides with a 14.6 kg block...
A 7.3 kg block with a speed of 4.8 m/s collides with a 14.6 kg block that has a speed of 3.2 m/s in the same direction. After the collision, the 14.6 kg block is observed to be traveling in the original direction with a speed of 4.0 m/s. (a) What is the velocity of the 7.3 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 6.3 kg block with a speed of 4.8 m/s collides with a 12.6 kg block...
A 6.3 kg block with a speed of 4.8 m/s collides with a 12.6 kg block that has a speed of 3.2 m/s in the same direction. After the collision, the 12.6 kg block is observed to be traveling in the original direction with a speed of 4.0 m/s. (a) What is the velocity of the 6.3 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 7.2 kg block with a speed of 10 m/s collides with a 19 kg block...
A 7.2 kg block with a speed of 10 m/s collides with a 19 kg block that has a speed of 5.4 m/s in the same direction. After the collision, the 19 kg block is observed to be traveling in the original direction with a speed of 5.4 m/s. (a) What is the velocity of the 7.2 kg block immediately after the collision?(b) By how much does the total kinetic energy of the system of two blocks change because of...
A 2.7 kg block with a speed of 5.4 m/s collides with a 5.4 kg block...
A 2.7 kg block with a speed of 5.4 m/s collides with a 5.4 kg block that has a speed of 3.6 m/s in the same direction. After the collision, the 5.4 kg block is observed to be traveling in the original direction with a speed of 4.5 m/s. (a) What is the velocity of the 2.7 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 2.9 kg block with a speed of 3.6 m/s collides with a 5.8 kg block...
A 2.9 kg block with a speed of 3.6 m/s collides with a 5.8 kg block that has a speed of 2.4 m/s in the same direction. After the collision, the 5.8 kg block is observed to be traveling in the original direction with a speed of 3.0 m/s. (a) What is the velocity of the 2.9 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A block of mass m = 2.30 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 2.30 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.20 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. a) Determine the speed of the block with mass m = 2.30 kg after the collision. b)Determine the speed of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT