In: Finance
A 27-year maturity bond making annual coupon payments with a coupon rate of 9% has duration of 11.5 years and convexity of 191.2. The bond currently sells at a yield to maturity of 8%. |
Required: | |
(a) |
Find the price of the bond if its yield to maturity falls to 7% or rises to 9%. (Round your answers to 2 decimal places. Omit the "$" sign in your response.) |
Yield to maturity of 7% | $ |
Yield to maturity of 9% | $ |
(b) |
What prices for the bond at these new yields would be predicted by the duration rule and the duration-with-convexity rule?(Round your answers to 2 decimal places. Omit the "$" sign in your response.) |
Duration rule | Duration-with- convexity rule |
|
YTM falls to 7% | $ | $ |
YTM increases to 9% | $ | $ |
(c) | What is the percent error for each rule? (Round your answers to 3 decimal places. Omit the "%" sign in your response.) |
Duration rule | Duration-with- convexity rule |
|
Percent error for 7% YTM | % | % |
Percent error for 9% YTM | % | % |
(d) | What do you conclude about the accuracy of the two rules? |
K = N | |||||||||
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N | |||||||||
k=1 | |||||||||
K =27 | |||||||||
Bond Price =∑ [(9*1000/100)/(1 + 8/100)^k] + 1000/(1 + 8/100)^27 | |||||||||
k=1 | |||||||||
Bond Price = 1109.35 | |||||||||
a) | |||||||||
New bond price @ YTM =7 | |||||||||
K = N | |||||||||
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N | |||||||||
k=1 | |||||||||
K =27 | |||||||||
Bond Price =∑ [(9*1000/100)/(1 + 7/100)^k] + 1000/(1 + 7/100)^27 | |||||||||
k=1 | |||||||||
Bond Price = 1239.73 | |||||||||
New bond price @ YTM =9 | |||||||||
K = N | |||||||||
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N | |||||||||
k=1 | |||||||||
K =27 | |||||||||
Bond Price =∑ [(9*1000/100)/(1 + 9/100)^k] + 1000/(1 + 9/100)^27 | |||||||||
k=1 | |||||||||
Bond Price = 1000 | |||||||||
b) | |||||||||
New bond price @ YTM =7 using duration | |||||||||
Mod.duration prediction = -Mod. Duration*Yield_Change*Bond_Price | |||||||||
=-11.5*-0.01*1109.35 | |||||||||
=127.57525 | |||||||||
New bond price = bond price+Modified duration prediction | |||||||||
=1109.35+127.57525 | |||||||||
=1236.93 | |||||||||
New bond price @ YTM =7 using duration and convexity | |||||||||
Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price | |||||||||
=0.5*191.2*-0.01^2*1109.35 | |||||||||
=10.605386 | |||||||||
New bond price = bond price+Mod.duration pred.+convex. Adj. | |||||||||
=1109.35+127.58+-10.61 | |||||||||
=1247.54 | |||||||||
New bond price @ YTM =9 using duration | |||||||||
Mod.duration prediction = -Mod. Duration*Yield_Change*Bond_Price | |||||||||
=-11.5*0.01*1109.35 | |||||||||
=-127.57525 | |||||||||
New bond price = bond price+Modified duration prediction | |||||||||
=1109.35+-127.57525 | |||||||||
=981.77 | |||||||||
New bond price @ YTM =9 using duration and convexity | |||||||||
Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price | |||||||||
=0.5*191.2*0.01^2*1109.35 | |||||||||
=10.605386 | |||||||||
New bond price = bond price+Mod.duration pred.+convex. Adj. | |||||||||
=1109.35+-127.58+10.61 | |||||||||
=992.38 | |||||||||
c) | |||||||||
Percentage error for YTM =7 and duration rule | |||||||||
Difference in price predicted and actual | |||||||||
=predicted price-actual price | |||||||||
=1236.92525-1239.73 | |||||||||
=-2.805 | |||||||||
%age difference = difference/actual | |||||||||
=-2.805/1239.73 | |||||||||
=-0.23% | |||||||||
Percentage error for YTM =7 and duration & convexity rule | |||||||||
Difference in price predicted and actual | |||||||||
=predicted price-actual price | |||||||||
=1247.54-1239.73 | |||||||||
=7.81 | |||||||||
%age difference = difference/actual | |||||||||
=7.81/1239.73 | |||||||||
=0.63% | |||||||||
Percentage error for YTM =7 and duration rule | |||||||||
Difference in price predicted and actual | |||||||||
=predicted price-actual price | |||||||||
=981.77475-1000 | |||||||||
=-18.225 | |||||||||
%age difference = difference/actual | |||||||||
=-18.225/1000 | |||||||||
=-0.23% | |||||||||
Percentage error for YTM =7 and duration & convexity rule | |||||||||
Difference in price predicted and actual | |||||||||
=predicted price-actual price | |||||||||
=992.38-1000 | |||||||||
=7.81 | |||||||||
%age difference = difference/actual | |||||||||
=-7.62/1000 | |||||||||
=-0.76% |
d. Duration rule is more accurate than convexity +duration rule