In: Finance
|
A 27-year maturity bond making annual coupon payments with a coupon rate of 9% has duration of 11.5 years and convexity of 191.2. The bond currently sells at a yield to maturity of 8%. |
| Required: | |
| (a) |
Find the price of the bond if its yield to maturity falls to 7% or rises to 9%. (Round your answers to 2 decimal places. Omit the "$" sign in your response.) |
| Yield to maturity of 7% | $ |
| Yield to maturity of 9% | $ |
| (b) |
What prices for the bond at these new yields would be predicted by the duration rule and the duration-with-convexity rule?(Round your answers to 2 decimal places. Omit the "$" sign in your response.) |
| Duration rule | Duration-with- convexity rule |
|
| YTM falls to 7% | $ | $ |
| YTM increases to 9% | $ | $ |
| (c) | What is the percent error for each rule? (Round your answers to 3 decimal places. Omit the "%" sign in your response.) |
| Duration rule | Duration-with- convexity rule |
|
| Percent error for 7% YTM | % | % |
| Percent error for 9% YTM | % | % |
| (d) | What do you conclude about the accuracy of the two rules? |
| K = N | |||||||||
| Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N | |||||||||
| k=1 | |||||||||
| K =27 | |||||||||
| Bond Price =∑ [(9*1000/100)/(1 + 8/100)^k] + 1000/(1 + 8/100)^27 | |||||||||
| k=1 | |||||||||
| Bond Price = 1109.35 | |||||||||
| a) | |||||||||
| New bond price @ YTM =7 | |||||||||
| K = N | |||||||||
| Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N | |||||||||
| k=1 | |||||||||
| K =27 | |||||||||
| Bond Price =∑ [(9*1000/100)/(1 + 7/100)^k] + 1000/(1 + 7/100)^27 | |||||||||
| k=1 | |||||||||
| Bond Price = 1239.73 | |||||||||
| New bond price @ YTM =9 | |||||||||
| K = N | |||||||||
| Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N | |||||||||
| k=1 | |||||||||
| K =27 | |||||||||
| Bond Price =∑ [(9*1000/100)/(1 + 9/100)^k] + 1000/(1 + 9/100)^27 | |||||||||
| k=1 | |||||||||
| Bond Price = 1000 | |||||||||
| b) | |||||||||
| New bond price @ YTM =7 using duration | |||||||||
| Mod.duration prediction = -Mod. Duration*Yield_Change*Bond_Price | |||||||||
| =-11.5*-0.01*1109.35 | |||||||||
| =127.57525 | |||||||||
| New bond price = bond price+Modified duration prediction | |||||||||
| =1109.35+127.57525 | |||||||||
| =1236.93 | |||||||||
| New bond price @ YTM =7 using duration and convexity | |||||||||
| Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price | |||||||||
| =0.5*191.2*-0.01^2*1109.35 | |||||||||
| =10.605386 | |||||||||
| New bond price = bond price+Mod.duration pred.+convex. Adj. | |||||||||
| =1109.35+127.58+-10.61 | |||||||||
| =1247.54 | |||||||||
| New bond price @ YTM =9 using duration | |||||||||
| Mod.duration prediction = -Mod. Duration*Yield_Change*Bond_Price | |||||||||
| =-11.5*0.01*1109.35 | |||||||||
| =-127.57525 | |||||||||
| New bond price = bond price+Modified duration prediction | |||||||||
| =1109.35+-127.57525 | |||||||||
| =981.77 | |||||||||
| New bond price @ YTM =9 using duration and convexity | |||||||||
| Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price | |||||||||
| =0.5*191.2*0.01^2*1109.35 | |||||||||
| =10.605386 | |||||||||
| New bond price = bond price+Mod.duration pred.+convex. Adj. | |||||||||
| =1109.35+-127.58+10.61 | |||||||||
| =992.38 | |||||||||
| c) | |||||||||
| Percentage error for YTM =7 and duration rule | |||||||||
| Difference in price predicted and actual | |||||||||
| =predicted price-actual price | |||||||||
| =1236.92525-1239.73 | |||||||||
| =-2.805 | |||||||||
| %age difference = difference/actual | |||||||||
| =-2.805/1239.73 | |||||||||
| =-0.23% | |||||||||
| Percentage error for YTM =7 and duration & convexity rule | |||||||||
| Difference in price predicted and actual | |||||||||
| =predicted price-actual price | |||||||||
| =1247.54-1239.73 | |||||||||
| =7.81 | |||||||||
| %age difference = difference/actual | |||||||||
| =7.81/1239.73 | |||||||||
| =0.63% | |||||||||
| Percentage error for YTM =7 and duration rule | |||||||||
| Difference in price predicted and actual | |||||||||
| =predicted price-actual price | |||||||||
| =981.77475-1000 | |||||||||
| =-18.225 | |||||||||
| %age difference = difference/actual | |||||||||
| =-18.225/1000 | |||||||||
| =-0.23% | |||||||||
| Percentage error for YTM =7 and duration & convexity rule | |||||||||
| Difference in price predicted and actual | |||||||||
| =predicted price-actual price | |||||||||
| =992.38-1000 | |||||||||
| =7.81 | |||||||||
| %age difference = difference/actual | |||||||||
| =-7.62/1000 | |||||||||
| =-0.76% |
d. Duration rule is more accurate than convexity +duration rule