In: Statistics and Probability
According to a poll on consumer behavior, 36% of people say they will only consider cars manufactured in their country when purchasing a new car. Suppose you select a random sample of 100 respondents. Complete parts (a) through (c) below.
a. What is the probability that the sample will have between 35% and 45% who say they will consider only cars manufactured by a company in their country when purchasing a new car? The probability is 0.5521. (Round to four decimal places as needed.)
b. The probability is 80% that the sample will be contained within what symmetrical limits of the population percentage? The probability is 80% that the sample percentage will be contained above 29.8% and below 42.2%. (Round to one decimal place as needed.)
c. The probability is 68% that the sample will be contained within what symmetrical limits of the population percentage? The probability is 68% that the sample percentage will be contained above 31.2% and below 40.8%. (Round to one decimal place as needed.)
How to solve in excel I already have answers but dont know how to do on excel.
In excel we have to use z test function (formula bar-> statistical functions->z test) ,
(formula bar-> statistical functions-> STDEV)
mean=36
upper limit=45
lower limit= 35
N=100
use z test function in excel
array = numbers from 1 to 100
x= 35 and 45
sigma =standard deviation . you can calculate it in excel using standard deviation function using array 1 to 100
z score comes out to be 0.028 for upper limit 45 (rounded off to 0.03)
then use the z table to calculate P value against z score i.e. 0.5120
similarly calculate for lower limit.
b) now we have P value. we will look for z score against it and using it we can calculate upper and lower limit.
use formula in excel, Z score for 80% probability =36-lower limit/ sigma
or, lower limit= 36- (z*sigma)
for upper limit, Z=upper limit - 36/sigma
or, upper limit= (Z*sigma) +36
c) you can solve it using z score against probality 68% using similar method as above. symmetrical limits means you can consider it to be a normal curve and use z score.