In: Advanced Math
Let f: [0 1] → R be a function of the class c ^ 2 that satisfies the differential equation f '' (x) = e^xf(x) for all x in (0,1). Show that if x0 is in (0,1) then f can not have a positive local maximum at x0 and can not have a negative local minimum at x0. If f (0) = f (1) = 0, prove that f = 0