In: Statistics and Probability
The following data was collected by taking samples of size 10 from a production process at Murray Manufacturing. The average weight and range are resented in the data below. Develop an X bar chart to determine if the production process is statistically in control and comment on any pattern, if present. Sample Sample Mean Range 1 11 1.5 2 12 1 3 14 2 4 11 .5 5 13 1 6 14 1 7 12 1.5 8 12 2 9 11 1 10 16 .5 11 13 1.5 12 10 1 13 12 1 14 13 2 15 11 1.5
| Sample | Mean | Range | 
| 1 | 11 | 1.5 | 
| 2 | 12 | 1 | 
| 3 | 14 | 2 | 
| 4 | 11 | 0.5 | 
| 5 | 13 | 1 | 
| 6 | 14 | 1 | 
| 7 | 12 | 1.5 | 
| 8 | 12 | 2 | 
| 9 | 11 | 1 | 
| 10 | 16 | 0.5 | 
| 11 | 13 | 1.5 | 
| 12 | 10 | 1 | 
| 13 | 12 | 1 | 
| 14 | 13 | 2 | 
| 15 | 11 | 1.5 | 
Control Limits for X bar chart
| Upper control limit:
 
  | 
 Lower control limit: 
  | 
| 
 Upper control limit: 
  | 
 Lower control limit: 
  | 


k is the number of subgroups = 15
now Central line (For X bar) = 184/15 = 12.3333333
Now central line ( for R bar ) = 19/15 = 1.26666667
Now Control limits for x bar
UCL = 12.333 + A2* Rbar
A2 = 0.308 (for n = 10)
UCL = 12.333+0.308*1.2666 = 12.7231128
LCL = 12.333 - A2* Rbar
LCL = 12.333-0.308*1.2666 = 11.9428872
Now control Limits for R chart
UCL = D4*Rbar
UCL = 1.77*1.2666 = 2.241882
LCL = D3*Rbar
LCL = 0.223*1.2666 = 0.2824518
| Control Limits for X bar | |
| UCL | 12.72328 | 
| CL | 12.3333 | 
| LCL | 11.94288 | 
| Control Limits for R | |
| UCL | 2.241882 | 
| CL | 1.2666 | 
| LCL | 0.2824518 | 
X bar Chart

R Chart

Conclusion
From X bar chart points lie outside the control limits
points outside the control limits are 3,4,6,9,10,12,14 and 15 Hence we Process is statistically out of control.
| 
 Tabular values for X-bar and range charts  | 
||||
| 
 Subgroup Size  | 
 A2  | 
 d2  | 
 D3  | 
 D4  | 
| 
 2  | 
 1.880  | 
 1.128  | 
 -----  | 
 3.268  | 
| 
 3  | 
 1.023  | 
 1.693  | 
 -----  | 
 2.574  | 
| 
 4  | 
 0.729  | 
 2.059  | 
 -----  | 
 2.282  | 
| 
 5  | 
 0.577  | 
 2.326  | 
 -----  | 
 2.114  | 
| 
 6  | 
 0.483  | 
 2.534  | 
 -----  | 
 2.004  | 
| 
 7  | 
 0.419  | 
 2.704  | 
 0.076  | 
 1.924  | 
| 
 8  | 
 0.373  | 
 2.847  | 
 0.136  | 
 1.864  | 
| 
 9  | 
 0.337  | 
 2.970  | 
 0.184  | 
 1.816  | 
| 
 10  | 
 0.308  | 
 3.078  | 
 0.223  | 
 1.777  | 
| 
 11  | 
 0.285  | 
 3.173  | 
 0.256  | 
 1.744  | 
| 
 12  | 
 0.266  | 
 3.258  | 
 0.283  | 
 1.717  | 
| 
 13  | 
 0.249  | 
 3.336  | 
 0.307  | 
 1.693  | 
| 
 14  | 
 0.235  | 
 3.407  | 
 0.328  | 
 1.672  | 
| 
 15  | 
 0.223  | 
 3.472  | 
 0.347  | 
 1.653  | 
| 
 16  | 
 0.212  | 
 3.532  | 
 0.363  | 
 1.637  | 
| 
 17  | 
 0.203  | 
 3.588  | 
 0.378  | 
 1.622  | 
| 
 18  | 
 0.194  | 
 3.640  | 
 0.391  | 
 1.608  | 
| 
 19  | 
 0.187  | 
 3.689  | 
 0.403  | 
 1.597  | 
| 
 20  | 
 0.180  | 
 3.735  | 
 0.415  | 
 1.585  |