Question

In: Operations Management

The data for 30 samples of 5 measurments each were collected from a process at Hawkeye...

The data for 30 samples of 5 measurments each were collected from a process at Hawkeye Plastics. They've asked you to create an x_bar chart and an s-chart for the process and to interpret the results for them.

a) What vallues will be used for the centerline, upper control limit, and lower control limit of each chart?

b) Creat the control charts.

c) Does the process appear to be in statistical control? Why or why not?

d) The specification for this process is 12.0 + or - 3.0. Does the process appear capable of meting specifications? Why or why not?

Sample Data (n = 5)
1 12.37 13.38 12.27 13.68 11.66
2 13.79 12.98 13.28 13.08 13.38
3 12.37 12.67 13.48 12.98 13.58
4 12.77 12.67 12.37 12.27 12.57
5 13.90 13.30 14.20 11.70 13.80
6 13.28 12.67 12.57 12.77 13.18
7 12.57 12.77 12.57 11.96 12.67
8 12.98 12.77 12.06 13.08 11.76
9 12.98 12.37 12.87 12.06 12.57
10 12.60 14.50 13.30 12.40 14.00
11 13.18 12.27 12.57 12.27 12.67
12 12.67 11.86 12.16 12.57 12.06
13 12.77 12.67 13.18 12.37 12.27
14 12.57 12.06 12.37 12.27 11.86
15 14.40 12.40 14.10 12.50 13.08
16 12.67 11.66 13.08 11.66 13.38
17 13.18 13.38 13.08 12.47 12.98
18 13.08 13.58 12.16 13.89 12.67
19 12.16 12.57 11.56 12.47 12.67
20 13.30 13.90 11.50 14.60 13.00
21 11.86 13.18 11.66 13.18 12.67
22 12.98 12.67 12.27 12.77 12.77
23 12.06 11.76 12.67 12.87 12.77
24 12.47 12.57 12.47 12.37 12.37
25 11.70 13.60 13.50 14.20 13.08
26 12.57 12.67 11.76 12.16 12.27
27 13.38 12.06 12.67 12.06 11.86
28 12.67 12.27 12.27 12.37 12.67
29 11.86 11.86 13.08 13.08 12.06
30 12.37 13.08 13.68 12.57 12.98

Solutions

Expert Solution

For n= 5,

B3 B4 A3
0 2.089 1.427

= Average of the entire sample = 12.723

Standard deviation, s is caluclated for all the 30 samples.

Average of the standard deviation, = 0.530

UCL = + A3   = 12.723 + (1.427*0.530) = 13.47860

LCL = - A3  = 12.723 - (1.427*0.530) = 11.96686

CL = = 12.723

X bar S Chart :

S chart

s UCL = B4s LCL = B3s CL =
0.8358 1.1065 0 0.530
0.3153 1.1065 0 0.530
0.5176 1.1065 0 0.530
0.2074 1.1065 0 0.530
0.9935 1.1065 0 0.530
0.3167 1.1065 0 0.530
0.3174 1.1065 0 0.530
0.5866 1.1065 0 0.530
0.3736 1.1065 0 0.530
0.8961 1.1065 0 0.530
0.3741 1.1065 0 0.530
0.3443 1.1065 0 0.530
0.3600 1.1065 0 0.530
0.2750 1.1065 0 0.530
0.9149 1.1065 0 0.530
0.7985 1.1065 0 0.530
0.3402 1.1065 0 0.530
0.6929 1.1065 0 0.530
0.4486 1.1065 0 0.530
1.1589 1.1065 0 0.530
0.7191 1.1065 0 0.530
0.2616 1.1065 0 0.530
0.4880 1.1065 0 0.530
0.0837 1.1065 0 0.530
0.9372 1.1065 0 0.530
0.3609 1.1065 0 0.530
0.6237 1.1065 0 0.530
0.2049 1.1065 0 0.530
0.6370 1.1065 0 0.530
0.5076 1.1065 0 0.530

c)

According to the Xbar S chart the process is under control.

WIth reference to teh S bar chart, The sample 20 is out of control.

D)

The specification limit is higher than the control limit. The process is capable of meeting the specifications.


Related Solutions

The following data was collected by taking samples of size 10 from a production process at...
The following data was collected by taking samples of size 10 from a production process at Murray Manufacturing. The average weight and range are resented in the data below. Develop an X bar chart to determine if the production process is statistically in control and comment on any pattern, if present. Sample Sample Mean Range 1 11 1.5 2 12 1 3 14 2 4 11 .5 5 13 1 6 14 1 7 12 1.5 8 12 2 9...
The data below provides 71 samples of size 8, collected each hour, for a particular process....
The data below provides 71 samples of size 8, collected each hour, for a particular process. a. Construct an X-bar chart for this process. b. Does the process appear to be in control? Why or why not? Hour Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 1 98.2706038 98.82376357 101.8175074 100.1819029 102.9593775 101.1650034 95.25956892 98.97423155 2 100.7165664 101.8866288 98.56812516 98.77126304 101.8273173 98.20298422 101.6974716 99.63706154 3 98.99219967 101.984498 103.78587 97.94211132 100.9617896 102.5191448 97.33630733...
Hello. Question: I have absorption data collected from 5 samples of the same enzyme at different...
Hello. Question: I have absorption data collected from 5 samples of the same enzyme at different concentration. The data is collected over the interval of 3 minutes. How can I convert this into catalytic velocity?
You collected some ecological samples in a field experiment in west Texas. Collected were soil samples...
You collected some ecological samples in a field experiment in west Texas. Collected were soil samples to determine the amount of nutrients that would need to be applied to sustain a desired level of crop growth. The observation was the amount of nutrient the soil contained. Samples were taken from 100 different locations. It was found that the nutrient data are normally distributed. The mean value of the samples was 16 units (the exact name for the units do not...
Ten samples of 15 parts each were taken from an ongoing process to establish a p...
Ten samples of 15 parts each were taken from an ongoing process to establish a p chart for control. The samples and the number of defectives in each are shown in the following table: Sample n Number of defects in Sample Sample n Number of defects in Sample 1 15 3 6 15 2 2 15 1 7 15 0 3 15 0 8 15 4 4 15 2 9 15 1 5 15 0 10 15 0 Develop a...
Problem 1.Historical data is collected from an assembly process that consists of 5 operations. Determine the...
Problem 1.Historical data is collected from an assembly process that consists of 5 operations. Determine the Rolled-Throughput Yield, Normalized Yield, Normalized Defects per Unit, and Total Defects per Unit (TDPU), given the following historical production data: Operation Opportunities per Unit Units Produced Defects Recorded Build Rotating Group and Inspect 10 851 75 Install Rotating Group in Housing and Install Fittings 7 1202 72 Perform Functional Test 5 943 82 Clean and Paint with Final Inspection 3 894 70 Install Pulley...
17-14: The following sample data have been collected from independent samples from independent samples from two...
17-14: The following sample data have been collected from independent samples from independent samples from two populations. The claim is that the first population median will be larger than the median of the second population.             Sample 1                    Sample 2             4.4       2.6                   3.7       4.2             2.7       2.4                   3.5       5.2             1.0       2.0                   4.0       4.4             3.5       2.8                   4.9       4.3             2.8                               3.1 State the appropriate null and alternative hypotheses. Using the Mann-Whitney U-test, based on the sample data, what...
Twelve samples, each containing five parts, were taken from a process that produces steel rods. The...
Twelve samples, each containing five parts, were taken from a process that produces steel rods. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. The results were: Sample Sample Mean (in.) Range (in.) 1 10.002 0.011 2 10.002 0.014 3 9.991 0.007 4 10.006 0.022 5 9.997 0.013 6 9.999 0.012 7 10.001 0.008 8 10.005 0.013 9 9.995 0.004 10 10.001 0.011 11 10.001 0.014 12 10.006...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 0 2 15 2 3 15 0 4 15 3 5 15 1 6 15 3 7 15 1 8 15 0 9 15 0 10 15 0 Determine the p−p− , Sp, UCL and LCL...
Twelve samples, each containing five parts, were taken from a process that produces steel rods at...
Twelve samples, each containing five parts, were taken from a process that produces steel rods at Emmanuel Kodzi’s factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. The results were: SAMPLE SAMPLE MEAN (IN.) RANGE (IN.) 1 10.02 0.011 2 10.02 0.014 3 9.991 0.007 4 10.006 0.022 5 9.997 0.013 6 9.999 0.012 7 10.001 0.008 8 10.005 0.013 9 9.995 0.004 10 10.001 0.011 11...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT