In: Statistics and Probability
The following data represent the concentration of dissolved organic carbon (mg/L) collected from 20 samples of organic soil. Assume that the population is normally distributed. Find sample mean, standard deviation and construct a 99% confidence interval the population mean m.
5.20 29.80 27.10 16.51 14.00
8.81 15.42 20.46 14.90 33.67
30.91 14.86 7.40 15.35 9.72
19.80 14.86 8.09 14.00 18.30
Solution:
x | x2 |
5.2 | 27.04 |
29.8 | 888.04 |
27.1 | 734.41 |
16.51 | 272.5801 |
14 | 196 |
8.81 | 77.6161 |
15.42 | 237.7764 |
20.46 | 418.6116 |
14.9 | 222.01 |
33.67 | 1133.6689 |
30.91 | 955.4281 |
14.86 | 220.8196 |
7.4 | 54.76 |
15.35 | 235.6225 |
9.72 | 94.4784 |
19.8 | 392.04 |
14.86 | 220.8196 |
8.09 | 65.4481 |
14 | 196 |
18.3 | 334.89 |
x=339.16 | x2=6978.0594 |
The sample mean is
Mean
= (x
/ n) )
=5.2+29.8+27.1+16.51+14+8.81+15.42+20.46+14.9+33.67+30.91+14.86+7.4+15.35+9.72+19.8+14.86+8.09+14+18.3/20
=339.16/20
=16.958
The sample standard is S
S =( x2 ) - (( x)2 / n ) n -1
=6978.0594-(339.16)220/19
=6978.0594-5751.4753/19
=1226.5841/19
=64.5571
=8.0347
Degrees of freedom = df = n - 1 = 20 - 1 = 19
At 99% confidence level the t is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
t /2,df = t0.005,19 =2.861
Margin of error = E = t/2,df * (s /n)
= 2.861 * (8.03 / 20)
= 5.14
Margin of error = 5.14
The 99% confidence interval estimate of the population mean is,
- E < < + E
16.96 - 5.14 < < 16.96 + 5.14
11.82 < < 22.10
(11.82, 22.10 )