Question

In: Advanced Math

1.Calculate the commutator C of Dn 2.Calculate the commutator C of Sn where n=3,4 (use the...

1.Calculate the commutator C of Dn

2.Calculate the commutator C of Sn where n=3,4

(use the fact that if H is a normal subgroup of G, then

G/H is abelian if and only if C is contained or equal to H)


Solutions

Expert Solution

Summary: Commutator subgroup of is the subgroup generated by .

Commutator subgroup of is .

Commutator subgroups of is .


Related Solutions

Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above...
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above by 3 (c) Sn converges to e (d) Obtain an expression for e (e) Prove e is irrational
Let sn = 21/n+ n sin(nπ/2), n ∈ N. (a) List all subsequential limits of (sn)....
Let sn = 21/n+ n sin(nπ/2), n ∈ N. (a) List all subsequential limits of (sn). (b) Give a formula for nk such that (snk) is an unbounded increasing subsequence of (sn). (c) Give a formula for nk such that (snk) is a convergent subsequence of (sn).
Let d1, d2, ..., dn, with n at least 2, be positive integers. Use mathematical induction...
Let d1, d2, ..., dn, with n at least 2, be positive integers. Use mathematical induction to explain why, if d1+ d2+…+dn = 2n-2, then there must be a tree with n vertices whose degrees are exactly d1, d2, ..., dn. (Be careful with reading this statement. It is not the same as saying that any tree with vertex degrees d1, d2, ..., dn must satisfy d1+ d2+...+dn = 2n-2, although this is also true. Rather, it says that if...
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m >...
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m > 1, m ∈ N such that |sn − m| = 1/3 (this says that every term of the sequence is an integer plus or minus 1/3 ). Show that the sequence sn is eventually constant, i.e. after a point all terms of the sequence are the same
Let τ ∈ Sn be the cycle (1, 2, . . . , k) ∈ Sn...
Let τ ∈ Sn be the cycle (1, 2, . . . , k) ∈ Sn where k ≤ n. (a) For σ ∈ Sn, prove that στσ-1 = (σ(1), σ(2), . . . , σ(k)). (b) Let ρ be any cycle of length k in Sn. Prove that there exists an element σ ∈ Sn so that στσ-1 = ρ.
Suppose A^2= A , where A is an n by n matrix. Use Jordan canonical form...
Suppose A^2= A , where A is an n by n matrix. Use Jordan canonical form to thaw that A is diagonalizable.
1. Use induction to prove that Summation with n terms where i=1 and Summation 3i 2...
1. Use induction to prove that Summation with n terms where i=1 and Summation 3i 2 − 3i + 1 = n^3 for all n ≥ 1. 2. Let X be the set of all natural numbers x with the property that x = 4a + 13b for some natural numbers a and b. For example, 30 ∈ X since 30 = 4(1) + 13(2), but 5 ∈/ X since there’s no way to add 4’s and 13’s together to...
Abstract Algebra Let n ≥ 2. Show that Sn is generated by each of the following...
Abstract Algebra Let n ≥ 2. Show that Sn is generated by each of the following sets. (a) S1 = {(1, 2), (1, 2, 3), (1, 2, 3, 4), ..., (1, 2, 3,..., n)} (b) S2 = {(1, 2, 3, ..., n-1), (1, 2, 3, ..., n)}
Prove that Sn is generated by {(i i + 1) I 1 < i < n - 1}.
  Prove that Sn is generated by {(i i + 1) I 1 < i < n - 1}.  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT