Question

In: Advanced Math

1. Use induction to prove that Summation with n terms where i=1 and Summation 3i 2...

1. Use induction to prove that Summation with n terms where i=1 and Summation 3i 2 − 3i + 1 = n^3 for all n ≥ 1.

2. Let X be the set of all natural numbers x with the property that x = 4a + 13b for some natural numbers a and b. For example, 30 ∈ X since 30 = 4(1) + 13(2), but 5 ∈/ X since there’s no way to add 4’s and 13’s together to reach 5. (It’s not a multiple of 4, and adding 13 goes over.) Use strong induction to prove that n ∈ X for all integers n ≥ 36. Hint: it should be easy to show that k + 1 ∈ X if k − 3 ∈ X. You may need multiple base cases for this problem

Solutions

Expert Solution

1. We will use induction on n to prove that ,

Base step : For n =1 .

So the statement is true for n=1 .

Induction Hypothesis : Suppose the statement is true for n= m that is ,

Induction Step : For n =m+1 .

, using induction hypothesis .

So the statement is true for n=m+1 if we assume that it is true for n=m . Also the statement is true for n=1. Hence by induction on n the statement is true for all natural number n .

Hence for all .


Related Solutions

Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Use mathematical induction to prove that for every integer n >=2, if a set S has...
Use mathematical induction to prove that for every integer n >=2, if a set S has n elements, then the number of subsets of S with an even number of elements equals the number of subsets of S with an odd number of elements. pleases send all detail solution.
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
Use double induction to prove that (m+ 1)^n> mn for all positive integers m; n
Use double induction to prove that (m+ 1)^n> mn for all positive integers m; n
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 +...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 + 100.
Prove by induction on n that the number of distinct handshakes between n ≥ 2 people...
Prove by induction on n that the number of distinct handshakes between n ≥ 2 people in a room is n*(n − 1)/2 . Remember to state the inductive hypothesis!
Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple...
Use induction to prove that for any positive integer n, 8^n - 3^n is a multiple of 5.
Using an induction proof technique, prove that the sum from i=1 to n of (2i-1) equals...
Using an induction proof technique, prove that the sum from i=1 to n of (2i-1) equals n*n
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT