Question

In: Advanced Math

Let E be the set of all positive integers. Define m to be an "even prime"...

Let E be the set of all positive integers. Define m to be an "even prime" if m is even but not factorable into two even numbers. Prove that some elements of E are not uniquely representable as products of "even primes."

Please be as detailed as possible!

Solutions

Expert Solution

Example and explanation attached.


Related Solutions

Let Dn be the set of positive integers that divide evenly into n. List the elements...
Let Dn be the set of positive integers that divide evenly into n. List the elements of each of the sets D6, D16, D12, and D30
7. Let m be a fixed positive integer. (a) Prove that no two among the integers...
7. Let m be a fixed positive integer. (a) Prove that no two among the integers 0, 1, 2, . . . , m − 1 are congruent to each other modulo m. (b) Prove that every integer is congruent modulo m to one of 0, 1, 2, . . . , m − 1.
The question is correct. Let X be an n-element set of positive integers each of whose...
The question is correct. Let X be an n-element set of positive integers each of whose elements is at most (2n - 2)/n. Use the pigeonhole principle to show that X has 2 distinct nonempty subsets A ≠ B with the property that the sum of the elements in A is equal to the sum of the elements in B.
Let S{a, b, c, d} be a set of four positive integers. If pairs of distinct...
Let S{a, b, c, d} be a set of four positive integers. If pairs of distinct elements of S are added, the following six sums are obtained:5,10, 11,13,14,19. Determine the values of a, b, c, and d. (There are two possibilities. )
Let S be the set of all integers x > 6543 such that the decimal representation...
Let S be the set of all integers x > 6543 such that the decimal representation of x has distinct digits, none of which is equal to 7, 8, or 9. (The decimal representation does not have leading zeros.) Determine the size of the set S. (do not just write out all elements of S.)
Let L1 be the language of the binary representations of all positive integers divisible by 4....
Let L1 be the language of the binary representations of all positive integers divisible by 4. Let L2 be the language of the binary representations of all positive integers not divisible by 4. None of the elements of these languages have leading zeroes. a) Write a regular expression denoting L1. b) Write a regular expression denoting L2. c) a) Draw a state diagram (= deterministic finite state automaton) with as few states as possible which recognizes L1. This state diagram...
determine all the prime ideals of the ring Z of integers determine all the prime ideals...
determine all the prime ideals of the ring Z of integers determine all the prime ideals of the ring K[X], where K is a field and X is an indeterminate
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer....
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer. (a) Assuming that A is sorted, show that in O(n) time it can be decided if A contains two distinct elements x and y such that x + y = t. (b) Use part (a) to show that the following problem, re- ferred to as the 3-Sum problem, can be solved in O(n2) time: 3-Sum Given an array A[1..n] of distinct positive integers, and...
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer....
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer. (a) Assuming that A is sorted, show that in O(n) time it can be decided if A contains two distinct elements x and y such that x + y = t. (b) Use part (a) to show that the following problem, re- ferred to as the 3-Sum problem, can be solved in O(n2) time: 3-Sum Given an array A[1..n] of distinct positive integers, and...
Let S be the set of all integers x ∈ {1,2,...,100} such that the decimal representation...
Let S be the set of all integers x ∈ {1,2,...,100} such that the decimal representation of x does not contain the digit 4. (The decimal representation does not have leading zeros.) • Determine the size of the set S without using the Complement Rule. • Use the Complement Rule to determine the size of the set S. (You do not get marks if you write out all numbers from 1 to 100 and mark those that belong to the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT