In: Math
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have a compressive strength of more than 1300 KN/m2. The mixture will not be used unless experimental evidence indicates conclusively that the strength specification has been met. Suppose compressive strength for specimens of this mixture is normally distributed with σ = 66. Let μ denote the true average compressive strength.
(a) What are the appropriate null and alternative hypotheses?
H0: μ = 1300
Ha: μ > 1300H0:
μ > 1300
Ha: μ =
1300    H0: μ =
1300
Ha: μ ≠ 1300H0:
μ < 1300
Ha: μ = 1300H0:
μ = 1300
Ha: μ < 1300
(b) Let
X
denote the sample average compressive strength for n = 14 randomly selected specimens. Consider the test procedure with test statistic
X
itself (not standardized). What is the probability distribution of the test statistic when H0 is true?
The test statistic has a gamma distribution.The test statistic has a normal distribution. The test statistic has a binomial distribution.The test statistic has an exponential distribution.
If
X = 1340,
find the P-value. (Round your answer to four decimal
places.)
P-value =
Should H0 be rejected using a significance
level of 0.01?
reject H0do not reject H0
(c) What is the probability distribution of the test statistic when
μ = 1350?
The test statistic has an exponential distribution.The test statistic has a normal distribution. The test statistic has a gamma distribution.The test statistic has a binomial distribution.
State the mean and standard deviation of the test statistic. (Round
your standard deviation to three decimal places.)
| mean | KN/m2 | |
| standard deviation | KN/m2 | 
For a test with α = 0.01, what is the probability that the
mixture will be judged unsatisfactory when in fact μ =
1350 (a type II error)? (Round your answer to four decimal
places.)
a)
H0: μ = 1300
Ha: μ > 1300
The test statistic has a normal distribution.
population std dev ,    σ =   
66.0000          
       
Sample Size ,   n =    14  
           
   
Sample Mean,    x̅ =   1340.0000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   66.0000   / √
   14   =   17.6392  
   
Z-test statistic= (x̅ - µ )/SE = (   1340.000  
-   1300   ) /    17.6392  
=   2.268
          
           
   
  
p-Value   =  
0.0117  
p-value>α, Do not reject null hypothesis   
do not reject H0
c)
The test statistic has a normal distribution.
true mean ,    µ =    1350  
           
          
           
hypothesis mean,   µo =    1300  
           
significance level,   α =    0.01  
           
sample size,   n =   14  
           
std dev,   σ =    66.0000  
           
          
           
δ=   µ - µo =    50  
           
          
           
std error of mean,   σx = σ/√n =   
66.0000   / √    14   =  
17.63924
P(type II error) , ß =   P(Z < Zα -
δ/σx)          
       
= P(Z <    2.326   - (  
50   /   17.6392   ))
=P(Z<   -0.508   ) =  
0.3056   [excel fucntion:
=normsdist(z)      
P(type II error ) = 0.3056