Question

In: Statistics and Probability

Suppose we wish to study the effect of education on an individual’s hourly wage using a...

Suppose we wish to study the effect of education on an individual’s hourly wage using a sample of individuals. For each individual i in our sample, let wi denote hourly wage, let ei denote years of post-high school education, let si denote sex (suppose si = 1 for females and si = 0 for males). Consider estimating the relationship:

wi = α + βei + ei

where α and β are unobservable population parameters and i is the component of wages not attributable to education (i.e. the error term).

a) Describe intuitively how we might approach the problem of figuring out α and β.

b) Denote by ˆα and βˆ possible estimates of α and β. Then we can write:wi = ˆα + βeˆ i + eˆi . wˆi = ˆα + βeˆ i

where ˆi is the residual and ˆwi is the fitted/predicted value, both based on ˆα and βˆ. Set up an appropriate optimization problem from which we can derive optimal choices of ˆα and βˆ.

c) Show that βˆ∗ ≡ Cov(wi,ei)/ V ar(ei) is an unbiased estimator of β only if strict exogeneity holds.

Solutions

Expert Solution

(a). A simple way to approach the problem is to estimate the parameters and using the data from a sample which is the representation of the population in question. These estimates of   and will stand as the representation of the actual values of   and . The value of the estimates will be more close to the actual value of the parameters, if we take the sample such that it is a better representation of the population.

(b). The appropriate optimisation problem to derive the optimal choices of and is the Least Squares method.

Here, we have the residuals at each data point, which is equal to,

We then sum up the values of all the residuals to get :

Here, E is a function of the parameters   and , since, observe that the predicted values are obtained by using the values of   and .

We now need to find the values of   and for which E is minimum. The condition for E to be minimum is given by:

and

We solve for the above two conditions, to get the desired value of   and .

This will be the optimal solution after optimization.

(c).


Related Solutions

A researcher is evaluating whether an increase in the minimum hourly wage had an effect on...
A researcher is evaluating whether an increase in the minimum hourly wage had an effect on employment in manufacturing industry in the following three months. Taking a sample of 25 firms, 1. [3 points] what should she conclude if the mean decrease in employment is 9 percent and the standard error of the mean is 5 percent (use 5% significance level)? 2. [3 points] what should she conclude if the mean decrease in employment is 12 percent and the standard...
The added worker effect is when A. workers increase their hours as the hourly wage increases....
The added worker effect is when A. workers increase their hours as the hourly wage increases. B. employers add more workers when product demand increases. C. one spouse enters the labor market when the other spouse sees their job or hours cut during a downturn. D. one spouse exits the labor market during a downturn.
Consider the relationship between hourly wage rate and education attainment. A random sample of 21 male...
Consider the relationship between hourly wage rate and education attainment. A random sample of 21 male workers was collected to estimate the following model Yi =β0+β1Xi+ui,fori=1,...,21. Here,Yi isthelogarithmofhourlywagerate,log(wage),forthei-thworker.Xi istheeducation level, husedu, of the i-th worker, which is measured as the years of schooling, and ui is the error term for the i-th worker. The ordinary least squares (OLS) estimation of the model is reported in the table below. The variable ones 18. (3points) Accordingtotheestimates,whatisthepredictedvalueofthelogarithmofhourly wage for a male worker with...
Suppose we wish to estimate the mean heart rate, using a 95% confidence interval, for a...
Suppose we wish to estimate the mean heart rate, using a 95% confidence interval, for a par- ticular population. We observe 130 individuals to see a sample mean of 98.249 and a sample standard deviation of 0.733. We then find the tc-value, corresponding to the value on the t-distribution (d.f. = 130) so that the area to the left of it is equal to 95%, which ends up being: tc ≈ 1.656659. Next we compute the error and obtain our...
Suppose the following table was generated from sample data of 20 employees relating hourly wage to...
Suppose the following table was generated from sample data of 20 employees relating hourly wage to years of experience and whether or not they have a college degree. Using statistical software, create an indicator (dummy) variable for the variable "Degree" and find the regression equation. Is there enough evidence to support the claim that on average employees with a college degree have higher hourly wages than those without a college degree at the 0.05 level of significance? If yes, write...
Suppose the following table was generated from sample data of 20 20 employees relating hourly wage...
Suppose the following table was generated from sample data of 20 20 employees relating hourly wage to years of experience and whether or not they have a college degree. Using statistical software, create an indicator (dummy) variable for the variable "Degree" and find the regression equation. Is there enough evidence to support the claim that on average employees with a college degree have higher hourly wages than those without a college degree at the 0.05 0.05 level of significance? If...
Suppose we are given a set ? containing 2? integers, and we wish to partition it...
Suppose we are given a set ? containing 2? integers, and we wish to partition it into two sets ?1 and ?2 so that |?1 | = |?2 | = ? and so that the sum of the numbers in ?1 is as close as possible to the sum of those in ?2. Let the neighborhood ? be determined by all possible interchanges of two integers between ?1 and ?2. Is ? exact?
Suppose that Marta's hourly wage is $20 per hour, her rental property yields $100 per day,...
Suppose that Marta's hourly wage is $20 per hour, her rental property yields $100 per day, and she has 16 hours in a day to allocate between leisure and work. a. What is her daily budget constraint? Draw it in a diagram. b. How much can Marta consume if she enjoys 16 hours of leisure? c. Suppose that the government imposes a 25% income tax. What is her budget constraint now? n the same diagram, using a dashed line, draw...
In this section we will study the problem of gender-wage discrimination. It is often argued that...
In this section we will study the problem of gender-wage discrimination. It is often argued that women are paid less than equally qualified men to do the same job. This is also true in academia. The University of Calgary administrators are trying to determine the gender earnings gap in order to `compensate' women who are underpaid. In the empirical analyses that follow, the following variables are defined as: Y - Log earnings F - female indicator Age - age of...
From univariate to bivariate Suppose you are interested in studying the effect of education on wages....
From univariate to bivariate Suppose you are interested in studying the effect of education on wages. You propose the following regression of annual salary on years of education and work experience: wage=β0 + β1 educ + β2exper + u where wage = annual salary educ = years of formal education exper = work experience u = error term In a simple regression analysis with educ as the only explanatory variable, the effects of other factors, such as exper, are ....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT