Question

In: Physics

An object with mass 100 kg moved in outer space. When it was at location <11,...

An object with mass 100 kg moved in outer space. When it was at location <11, -21, -7> its speed was 4.0 m/s. A single constant force <250, 330, -140> N acted on the object while the object moved from location <11, -21, -7> m to location <16, -14, -10> m. Then a different single constant force <100, 260, 170> N acted on the object while the object moved from location <16, -14, -10> m to location <19, -21, -5> m. What is the speed of the object at this final location?

Solutions

Expert Solution

Find acceleration due to both the forces from Newton second law.

Also find distance between the given three points.

Then use equation of motion to find the final speed.


Related Solutions

n object with mass 100 kg moved in outer space. When it was at location <6,...
n object with mass 100 kg moved in outer space. When it was at location <6, -26, -7> its speed was 6.0 m/s. A single constant force <230, 310, -120> N acted on the object while the object moved from location <6, -26, -7> m to location <12, -22, -11> m. Then a different single constant force <100, 260, 120> N acted on the object while the object moved from location <12, -22, -11> m to location <16, -27, -6>...
An object with mass 70 kg moved in outer space. When it was at location <7,...
An object with mass 70 kg moved in outer space. When it was at location <7, -35, -5> its speed was 5.0 m/s. A single constant force <210, 400, -150> N acted on the object while the object moved from location <7, -35, -5> m to location <11, -27, -8> m. Then a different single constant force <140, 250, 210> N acted on the object while the object moved from location <11, -27, -8> m to location <17, -31, -3>...
In a location in outer space far from all other objects, a nucleus whose mass is...
In a location in outer space far from all other objects, a nucleus whose mass is 4.019480 × 10−25 kg and that is initially at rest undergoes spontaneous alpha decay. The original nucleus disappears, and two new particles appear: a He-4 nucleus of mass 6.640678 × 10−27 kg (an alpha particle consisting of two protons and two neutrons) and a new nucleus of mass 3.952926 × 10−25 kg. These new particles move far away from each other, because they repel...
In outer space rock 1, with mass 3 kg and velocity < 3500, -2500, 3200 >...
In outer space rock 1, with mass 3 kg and velocity < 3500, -2500, 3200 > m/s, struck rock 2, which was at rest. After the collision, rock 1's velocity is < 3000, -1800, 3500 > m/s. What is the final momentum of rock 2? 2f =   kg · m/s Before the collision, what was the kinetic energy of rock 1? K1i =  J Before the collision, what was the kinetic energy of rock 2? K2i =  J After the collision, what...
A certain object has a mass m $ 100 kg and is acted on by a force
A certain object has a mass m $ 100 kg and is acted on by a force f (t) = 500[2 – e-t sin(5πt)] N. The mass is at rest at t = 0. Use MuPAD to compute the object’s velocity at t = 5 s. The equation of motion is mυ̇ = f(t).
In outer space a rock with mass 7 kg, and velocity <3400, -2700, 2000> m/s, struck...
In outer space a rock with mass 7 kg, and velocity <3400, -2700, 2000> m/s, struck a rock with mass 17 kg and velocity <200, -290, 340> m/s. After the collision, the 7 kg rock's velocity is <3000, -2100, 2300> m/s. What is the final velocity of the 17 kg rock? What is the change in the internal energy of the rocks?
An object with total mass mtotal = 8.9 kg is sitting at rest when it explodes...
An object with total mass mtotal = 8.9 kg is sitting at rest when it explodes into two pieces. The two pieces, after the explosion, have masses of m and 3m. During the explosion, the pieces are given a total energy of E = 49 J. 1) What is the speed of the smaller piece after the collision? 2) What is the speed of the larger piece after the collision? 3) If the explosion lasted for a time t =...
An object with total mass mtotal = 14.8 kg is sitting at rest when it explodes...
An object with total mass mtotal = 14.8 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.8 kg moves up and to the left at an angle of θ1 = 22° above the –x axis with a speed of v1 = 27.6 m/s. A second piece with mass m2 = 5.1 kg moves down and to the right an angle of θ2 = 27° to the right of the -y axis...
An object with total mass mtotal = 14.9 kg is sitting at rest when it explodes...
An object with total mass mtotal = 14.9 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.8 kg moves up and to the left at an angle of θ1 = 23° above the –x axis with a speed of v1 = 27.9 m/s. A second piece with mass m2 = 5.1 kg moves down and to the right an angle of θ2 = 28° to the right of the -y axis...
An object with total mass mtotal = 14.6 kg is sitting at rest when it explodes...
An object with total mass mtotal = 14.6 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.7 kg moves up and to the left at an angle of θ1 = 20° above the –x axis with a speed of v1 = 26.8 m/s. A second piece with mass m2 = 5.1 kg moves down and to the right an angle of θ2 = 25° to the right of the -y axis...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT