Question

In: Advanced Math

Let T : P3(R) → P4(R) be defined by T(f(x)) = 5f′(x)-∫ f(t)dt (integral from 0...

Let T : P3(R) → P4(R) be defined by T(f(x)) = 5f′(x)-∫ f(t)dt (integral from 0 to x)

1. Show that T is a linear transformation.

2.Find dim (P3(R)) and dim (P4(R)).

3.Find rank(T). Find nullity(T)
4. Is T one-to-one? Is T onto? Justify your answers.

Solutions

Expert Solution

Please feel free to ask for any query and rate positively.


Related Solutions

6. (a) let f : R → R be a function defined by f(x) = x...
6. (a) let f : R → R be a function defined by f(x) = x + 4 if x ≤ 1 ax + b if 1 < x ≤ 3 3x x 8 if x > 3 Find the values of a and b that makes f(x) continuous on R. [10 marks] (b) Find the derivative of f(x) = tann 1 1 ∞x 1 + x . [15 marks] (c) Find f 0 (x) using logarithmic differentiation, where f(x)...
5). Let f : [a,b] to R be bounded and f(x) > a > 0, for...
5). Let f : [a,b] to R be bounded and f(x) > a > 0, for all x in [a,b]. Show that if f is Riemann integrable on [a,b] then 1/f : [a,b] to R, (1/f) (x) = 1/f(x) is also Riemann integrable on [a,b].
Let T : Pn → R be defined by T(p(x)) = the sum of all the...
Let T : Pn → R be defined by T(p(x)) = the sum of all the the coefficients of p(x). Show that T is a linear transformation with dim(ker T) = n and conclude that {x − 1, x2 − 1, . . . , x^n − 1} is a basis of ker T.
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R)....
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R). Explain why {f(x) : f(0) = 1} is not.
Applied Math Let T be the operator on P2 defined by the equation T(f)=f+(1+x)f' (a) Show...
Applied Math Let T be the operator on P2 defined by the equation T(f)=f+(1+x)f' (a) Show T i linear operator from P2 into P2! (b) Give matrix reppressentaion in base vectorss B={1,x,x2}! (c) Give a diagonal matrix representing T (d) Give a diagonal matrix representing T Where P2 is ppolynomials with degree less then or equal to 2 and f' is the derivative of polynomial f.
f(t) = 1- t 0<t<1 a function f(t) defined on an interval 0 < t <...
f(t) = 1- t 0<t<1 a function f(t) defined on an interval 0 < t < L is given. Find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge
Let pi = P(X = i) and suppose that p1 + p2 + p3 + p4...
Let pi = P(X = i) and suppose that p1 + p2 + p3 + p4 = 1. Suppose that E(X) = 2.5. (a) What values of p1, p2, p3, and p4 maximize Var(X)? (b) What values of p1, p2, p3, and p4 minimize Var(X)?
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f...
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f is injective, but not surjective. (b) Suppose g : R\{−1} → R\{a} is a function such that g(x) = x−1, where a ∈ R. Determine x+1 a, show that g is bijective and determine its inverse function.
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​...
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​ S (x​2,​ y​2)​ ⬄ points (x​1,​ y​1)​ and (x​2,​ y​2)​are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must​ give a counterexample.
Which of the following functions are one-to-one? Group of answer choices f;[−3,3]→[0,3],f(x)=9−x2f;[−3,3]→[0,3],f(x)=9−x2 f;R→R,f(x)=x3f;R→R,f(x)=x3 f;[0,∞]→[0,∞],f(x)=x2f;[0,∞]→[0,∞],f(x)=x2
Which of the following functions are one-to-one? Group of answer choices f;[−3,3]→[0,3],f(x)=9−x2f;[−3,3]→[0,3],f(x)=9−x2 f;R→R,f(x)=x3f;R→R,f(x)=x3 f;[0,∞]→[0,∞],f(x)=x2f;[0,∞]→[0,∞],f(x)=x2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT