Question

In: Math

Let T : Pn → R be defined by T(p(x)) = the sum of all the...

Let T : Pn → R be defined by T(p(x)) = the sum of all the the coefficients of p(x). Show that T is a linear transformation with dim(ker T) = n and conclude that {x − 1, x2 − 1, . . . , x^n − 1} is a basis of ker T.

Solutions

Expert Solution


Related Solutions

Let T : P3(R) → P4(R) be defined by T(f(x)) = 5f′(x)-∫ f(t)dt (integral from 0...
Let T : P3(R) → P4(R) be defined by T(f(x)) = 5f′(x)-∫ f(t)dt (integral from 0 to x) 1. Show that T is a linear transformation. 2.Find dim (P3(R)) and dim (P4(R)). 3.Find rank(T). Find nullity(T) 4. Is T one-to-one? Is T onto? Justify your answers.
Find a basis for the subspace of Pn defined by V={p an element of Pn, such...
Find a basis for the subspace of Pn defined by V={p an element of Pn, such that p(1)=0}. What is the dimension of V?
f: R[x] to R is the map defined as f(p(x))=p(2) for any polynomial p(x) in R[x]....
f: R[x] to R is the map defined as f(p(x))=p(2) for any polynomial p(x) in R[x]. show that f is 1) a homomorphism 2) Ker(f)=(x-2)R[x] 3) prove that R[x]/Ker(f) is an isomorphism with R. (R in this case is the Reals so R[x]=a0+a1x+a1x^2...anx^n)
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​...
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​ S (x​2,​ y​2)​ ⬄ points (x​1,​ y​1)​ and (x​2,​ y​2)​are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must​ give a counterexample.
6. (a) let f : R → R be a function defined by f(x) = x...
6. (a) let f : R → R be a function defined by f(x) = x + 4 if x ≤ 1 ax + b if 1 < x ≤ 3 3x x 8 if x > 3 Find the values of a and b that makes f(x) continuous on R. [10 marks] (b) Find the derivative of f(x) = tann 1 1 ∞x 1 + x . [15 marks] (c) Find f 0 (x) using logarithmic differentiation, where f(x)...
Let P denote the vector space of all polynomials with real coefficients and Pn be the...
Let P denote the vector space of all polynomials with real coefficients and Pn be the set of all polynomials in p with degree <= n. a) Show that Pn is a vector subspace of P. b) Show that {1,x,x2,...,xn} is a basis for Pn.
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x...
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x +2y +z, 2x +2y +3z +w, x +4y +2w) a) Find the dimension and basis for Im T (the image of T) b) Find the dimension and basis for Ker ( the Kernel of T) c) Does the vector v= (2,3,5) belong to Im T? Justify the answer. d) Does the vector v= (12,-3,-6,0) belong to Ker? Justify the answer.
Let L = {x = a r b s c t | r + s =...
Let L = {x = a r b s c t | r + s = t, r, s, t ≥ 0}. Give the simplest proof you can that L is not regular using the pumping lemma.
Define the linear transformation S : Pn → Pn and T : Pn → Pn by...
Define the linear transformation S : Pn → Pn and T : Pn → Pn by S(p(x)) = p(x + 1), T(p(x)) = p'(x) (a) Find the matrix associated with S and T with respect to the standard basis {1, x, x2} for P2 . (b) Find the matrix associated with S ◦ T(p(x)) for n = 2 and for the standard basis {1, x, x2}. Is the linear transformation S ◦ T invertible? (c) Is S a one-to-one transformation?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT