In: Statistics and Probability
The wind chill factor depends on wind speed and air temp. This data represents the wind speed (in miles per hour) and wind chill factor at an air temp. of 15 degrees F. Wind speed(x) 5, 10, 15, 20, 25, 30, 35 Wind chill(y) 12, -3, -11, -17, -22, -25, -27 Compute the least squares regression line and correlation coefficient for this data. Predict the wind chill for a wind speed of 50 miles per hour. Determine the wind speed (to the nearest mile per hour) for a wind chill of -45 degrees F. State the percentage of explained variation for the data set. State the value for the sum of the squared residuals.
Ans:
X | Y | XY | X^2 | Y^2 | |
1 | 5 | 12 | 60 | 25 | 144 |
2 | 10 | -3 | -30 | 100 | 9 |
3 | 15 | -11 | -165 | 225 | 121 |
4 | 20 | -17 | -340 | 400 | 289 |
5 | 25 | -22 | -550 | 625 | 484 |
6 | 30 | -25 | -750 | 900 | 625 |
7 | 35 | -27 | -945 | 1225 | 729 |
Total= | 140 | -93 | -2720 | 3500 | 2401 |
slope=(7*(-2720)-140*(-93))/(7*3500-140^2)=-1.2286
intercept=(-93-(-1.2286)*140)/7=11.286
Regression eqn:
y'=-1.2286x+11.286
Correlation cofficient,r=(7*(-2720)-140*(-93))/SQRT((7*3500-140^2)*(7*2401-(-93)^2))=-0.952
X | Y | y' | (y-y')^2 | (y-(-13.2857))^2 | |
1 | 5 | 12 | 5.14315 | 47.02 | 639.37 |
2 | 10 | -3 | -0.9997 | 4.00 | 105.80 |
3 | 15 | -11 | -7.14255 | 14.88 | 5.22 |
4 | 20 | -17 | -13.2854 | 13.80 | 13.80 |
5 | 25 | -22 | -19.4283 | 6.61 | 75.94 |
6 | 30 | -25 | -25.5711 | 0.33 | 137.22 |
7 | 35 | -27 | -31.714 | 22.22 | 188.08 |
Total= | 140 | -93 | 108.86 | 1165.43 | |
mean(y)= | -13.2857 | SSE | SST | ||
SSR= | 1056.57 |
SSE=sum of squared residual=108.86
SST=1165.43
SSR=1165.43-108.86=1056.57
cofficient of determination,R^2=1056.57/1165.43=0.9066,that means 90.66% of the variation is explained by the above regression model.