In: Statistics and Probability
If X follows a binomial(5, 0.15), determine
(a) P(X = 0).
(b) P(X ≤ 4).
(c) P(X > 1).
Binomial Probability = nCx * (p)x * (1-p)n-x, where n = number of trials and x is the number of successes
Please note nCx = n! / [(n-x)!*x!]
Also sum of probabilities from 0 till n = 1, i.eP(0) + P(1) + P(2) +.......+P(n) = 1
____________________________________________________________________________
Given n = 5, p = 0.15, therefore q = 1 - p = 1 - 0.15 = 0.85
(a) P(X = 0) = 5C0 * (0.15)0 * (0.85)5 = 0.4437
______________________________________________________________________________
(b) P(X 4) = P(4) + P(3) + P(2) + P(1) + P(0)
But Since the sum of probabilities P(5) + P(4) + P(3) + P(2) + P(1) + P(0) = 1
Therefore P(4) + P(3) + P(2) + P(1) + P(0) = 1 - P(5)
P(X = 5) = 5C5 * (0.15)5 * (0.85)0 = 0.00008
Therefore P(X 4) = 1 - 0.00008 = 0.99992
(If rounded to 4 decimal places, then 1.0000)
____________________________________________________________________________
(c) P(X > 1) = P(2) + P(3) + P(4) + P(5) = 1 - [P(0) + P(1)]. We know from (a) P(0) = 0.4437
P(X = 1) = 5C1 * (0.15)1 * (0.85)4 = 0.3915
Therefore P(X > 1) = 1 - [0.4437 + 0.3915] = 1 - 0.8352 = 0.1648
___________________________________________________________________________