Question

In: Statistics and Probability

Suppose that X ~ NB(r, p) [negative binomial distribution] and that Y ~ B(n, p) [binomial]....

Suppose that X ~ NB(r, p) [negative binomial distribution] and that Y ~ B(n, p) [binomial].

a. Give a probabilistic argument to show that P(X > n) = P(Y < r).

b. Use the FPF to express the equality in part (a) in terms of PMFs.

c. Using the complementation rule, how many terms of the PMF of X must be evaluated to determine P(X > n)?

d. How many terms of the PMF of Y must be evaluated to determine P(Y < r)?

e. Use your answers from part (c) and (d) to comment on the computational savings of using the result of part (a) to evaluate P(X > n) when n is large relative to r.

Solutions

Expert Solution

a) The event (X > n) means There are more than n trials required to get the rth success. Which means, if we consider the first n trials of the experiments then, the number of successes we obtained must be less than r., because otherwise, there wouldn't require more than n trials to get the rth success, which is equivalent to saying that (Y < r). Hence the probabilistic argument.

b) I don't know what is FPF though. If you can tell me the full form then, I will answer that. Otherwise the mathematical representation of the above argument will work.

c) There must be (n-r+1) terms to be calculated to determine P(X > n)

d) Only r terms need to be calculated to find P(Y < r)

e) When n is large relative to r, n-r >> r, so there are many more terms that needs to be calculated to find P(X > n), where as using (a), only r terms needs to be calculated, which is much less when n >> r


Related Solutions

Binomial Distribution. Suppose that X has a binomial distribution with n = 50 and p =...
Binomial Distribution. Suppose that X has a binomial distribution with n = 50 and p = 0.6. Use Minitab to simulate 40 values of X. MTB > random 40 c1; SUBC > binomial 50 0.6. Note: To find P(X < k) for any k > 0, use ‘cdf’ command; this works by typing: MTB > cdf; SUBC > binomial 50 0.6. (a) What proportion of your values are less than 30? (b) What is the exact probability that X will...
Suppose that x has a binomial distribution with n = 201 and p = 0.49. (Round...
Suppose that x has a binomial distribution with n = 201 and p = 0.49. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x. np n(1 – p) Both np and n(1 – p) ≤ or ≥ 5 (b)...
Suppose that x has a binomial distribution with n = 50 and p = 0.6, so...
Suppose that x has a binomial distribution with n = 50 and p = 0.6, so that μ = np = 30 and σ = np(1 − p) = 3.4641. Approximate the following probabilities using the normal approximation with the continuity correction. (Hint: 25 < x < 39 is the same as 26 ≤ x ≤ 38. Round your answers to four decimal places.) (a) P(x = 30) (b) P(x = 25) ( c) P(x ≤ 25) (d) P(25 ≤...
Suppose that X is a single observation from a Binomial(n, p) distribution where n is known...
Suppose that X is a single observation from a Binomial(n, p) distribution where n is known and 0 < p < 1 is unknown. Consider three estimators of p: pˆ = X /n “sample proportion” pˆA = (X + 2)/ (n + 4) “plus four estimator” pˆB = (X + (√n/4))/( n + √ n ). “constant MSE estimator” (a) Find the bias functions for all three estimators. (b) Find the variance functions of all three estimators. (c) Find the...
Suppose that X is a single observation from a Binomial(n, p) distribution where n is known...
Suppose that X is a single observation from a Binomial(n, p) distribution where n is known and 0 < p < 1 is unknown. Consider three estimators of p: pˆ = X /n “sample proportion” pˆA = (X + 2)/ (n + 4) “plus four estimator” pˆB = (X + (√n/4))/( n + √ n ). “constant MSE estimator” (a) Find the bias functions for all three estimators. (b) Find the variance functions of all three estimators. (c) Find the...
Let X∼Binomial(n,p) and Y∼Bernoulli(p) be independent random variables. Find the distribution of X+Y using the convolution...
Let X∼Binomial(n,p) and Y∼Bernoulli(p) be independent random variables. Find the distribution of X+Y using the convolution formula
Find the following probabilities. A.) P(X=5), X FOLLOWING A BINOMIAL DISTRIBUTION, WITH N=50 AND P=.7. B.)...
Find the following probabilities. A.) P(X=5), X FOLLOWING A BINOMIAL DISTRIBUTION, WITH N=50 AND P=.7. B.) P(X = 5), X following a Uniform distribution on the interval [3,7]. c.) P(X = 5), X following a Normal distribution, with µ = 3, and σ = .7. (To complete successfully this homework on Stochastic Models, you need to use one of the software tools: Excel, SPSS or Mathematica, to answer the following items, and print out your results directly from the software....
For a binomial probability distribution, n = 130 and p = 0.60. Let x be the...
For a binomial probability distribution, n = 130 and p = 0.60. Let x be the number of successes in 130 trials. a. Find the mean and standard deviation of this binomial distribution. a. Find the mean and the standard deviation of this binomial distribution. b. Find to 4 decimal places P(x ≤ 75) using the normal approximation. P(x ≤ 75) = c. Find to 4 decimal places P(67 ≤ x ≤ 72) using the normal approximation. P(67 ≤ x...
1. Suppose X has a binomial distribution with parameters n and p. Then its moment-generating function...
1. Suppose X has a binomial distribution with parameters n and p. Then its moment-generating function is M(t) = (1 − p + pe^t ) n . (a) Use the m.g.f. to show that E(X) = np and Var(X) = np(1 − p). (b) Prove that the formula for the m.g.f. given above is correct. Hint: the binomial theorem says that Xn x=0 n x a^x b^(n−x) = (a + b)^n . 2. Suppose X has a Poisson distribution with...
A random variable Y whose distribution is binomial with parameters are n = 500 and p=...
A random variable Y whose distribution is binomial with parameters are n = 500 and p= 0.400, and here Y suggests the number of desired outcomes of the random experiment and n-Y is the number of undesired outcomes obtained from a random experiment of n independent trials. On this random experiment   p̂ sample proportion is found as Y/n. (Round your answers to 3 decimal places in all parts.) a)What is the expected value of this statistic? b)Between what limits will...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT