Question

In: Advanced Math

Let G be a group. Consider the set G with a new operation ∗ given by...

Let G be a group. Consider the set G with a new operation ∗ given by a ∗ b = ba. Show that (G, ∗) is a group isomorphic to the original group G. Give an explicit isomorphism.

Solutions

Expert Solution


Related Solutions

Let G be a group acting on a set S, and let H be a group...
Let G be a group acting on a set S, and let H be a group acting on a set T. The product group G × H acts on the disjoint union S ∪ T as follows. For all g ∈ G, h ∈ H, s ∈ S and t ∈ T, (g, h) · s = g · s, (g, h) · t = h · t. (a) Consider the groups G = C4, H = C5, each acting...
Let G be a group with the binary operation of juxtaposition and identity e. Let H...
Let G be a group with the binary operation of juxtaposition and identity e. Let H be a subgroup of G. (a) (4 points) Prove that a binary relation on G defined by a ∼ b if and only if a−1b ∈ H, is an equivalence. (b) (3 points) For all a ∈ G, denote by [a] the equivalence class of a with respect to ∼ . Prove that [a] = {ah|h ∈ H}. We write [a] = aH and...
Let G be a group. The center of G is the set Z(G) = {g∈G |gh...
Let G be a group. The center of G is the set Z(G) = {g∈G |gh = hg ∀h∈G}. For a∈G, the centralizer of a is the set C(a) ={g∈G |ga =ag } (a)Prove that Z(G) is an abelian subgroup of G. (b)Compute the center of D4. (c)Compute the center of the group G of the shuffles of three objects x1,x2,x3. ○n: no shuffling occurred ○s12: swap the first and second items ○s13: swap the first and third items ○s23:...
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. a)Show that φ is a group homomorphism. b) Find the image ofφ, i.e.φ(Z), and prove that it is a subgroup ofG.
If G is a group, show that the set of automorphisms of G and the set...
If G is a group, show that the set of automorphisms of G and the set of inner automorphisms of G are both groups.
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let G be a group, and let a ∈ G be a fixed element. Define a...
Let G be a group, and let a ∈ G be a fixed element. Define a function Φ : G → G by Φ(x) = ax−1a−1. Prove that Φ is an isomorphism is and only if the group G is abelian.
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂ G be a subgroup of G such that K ⊂ H Suppose that H is also a normal subgroup of G. (a) Show that H/K ⊂ G/K is a normal subgroup. (b) Show that G/H is isomorphic to (G/K)/(H/K).
Let A and B be groups, and consider the product group G=A x B. (a) Prove...
Let A and B be groups, and consider the product group G=A x B. (a) Prove that N={(ea,b) E A x B| b E B} is a subgroup. (b) Prove that N is isomorphic to B (c) Prove that N is a normal subgroup of G (d) Prove that G|N is isomorphic to A
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT