Question

In: Advanced Math

Let G be a group. The center of G is the set Z(G) = {g∈G |gh...

Let G be a group. The center of G is the set Z(G) = {g∈G |gh = hghG}. For aG, the centralizer of a is the set C(a) ={gG |ga =ag }

(a)Prove that Z(G) is an abelian subgroup of G.

(b)Compute the center of D4.

(c)Compute the center of the group G of the shuffles of three objects x1,x2,x3.

○n: no shuffling occurred

○s12: swap the first and second items

○s13: swap the first and third items

○s23: swap the second and third items

○m1: move the last item to the front

○m2: move the front item to the end

(d)Compute the center of GL2(R).

(e)Prove that Z(G) = ∩a∈GC(a).

please explain every subquestion

Solutions

Expert Solution


Related Solutions

Let G be a Group. The center of, denoted by Z(G), is defined to be the...
Let G be a Group. The center of, denoted by Z(G), is defined to be the set of all elements of G that with every element of G. Symbolically, we have Z(G) = {x in G | ax=xa for all a in G}. (a) Prove that Z(G) is a subgroup of G. (b) Prove that Z(G) is an Abelian group.
Let G be a group acting on a set S, and let H be a group...
Let G be a group acting on a set S, and let H be a group acting on a set T. The product group G × H acts on the disjoint union S ∪ T as follows. For all g ∈ G, h ∈ H, s ∈ S and t ∈ T, (g, h) · s = g · s, (g, h) · t = h · t. (a) Consider the groups G = C4, H = C5, each acting...
Let G be a group and let C={g∈G|xg=gx for all x∈G} be the center of G....
Let G be a group and let C={g∈G|xg=gx for all x∈G} be the center of G. Prove that for any a ∈ G, aC = Ca.
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove...
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove that xa+b = xaxb b) prove that (xa)-1 = x-a c) establish part a) for arbitrary integers a and b in Z (positive, negative or zero)
Let G be a nontrivial nilpotent group. Prove that G has nontrivial center.
Let G be a nontrivial nilpotent group. Prove that G has nontrivial center.
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let G be a group. Consider the set G with a new operation ∗ given by...
Let G be a group. Consider the set G with a new operation ∗ given by a ∗ b = ba. Show that (G, ∗) is a group isomorphic to the original group G. Give an explicit isomorphism.
Let G be a group,a;b are elements of G and m;n are elements of Z. Prove...
Let G be a group,a;b are elements of G and m;n are elements of Z. Prove (a). (a^m)(a^n)=a^(m+n) (b). (a^m)^n=a^(mn)
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. a)Show that φ is a group homomorphism. b) Find the image ofφ, i.e.φ(Z), and prove that it is a subgroup ofG.
If G is a group, show that the set of automorphisms of G and the set...
If G is a group, show that the set of automorphisms of G and the set of inner automorphisms of G are both groups.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT