Question

In: Math

F

F

Solutions

Expert Solution

On solving those equations we will get the critical points

The point is whether extrema point Or saddle point is known by the D value depending upon its sign. But the D value is complex we cannot say whether it is extrema Or saddle. You can understand on seeing the graph.

The above one is the graph plotted for given function


Related Solutions

Salary Gender1 22.8 F 23.6 F 23.4 F 34.1 F 35.2 F 25.3 F 51 F...
Salary Gender1 22.8 F 23.6 F 23.4 F 34.1 F 35.2 F 25.3 F 51 F 24.4 F 22.7 F 23.9 F 22.6 F 24.1 F 74.5 F 48.9 F 57.7 F 63.7 F 77.7 F 79.1 F 23 F 42.9 F 46.2 F 28.1 F 60 F 42.1 F 61.5 F 36.2 M 42.1 M 23 M 21.8 M 40.5 M 67.5 M 51.1 M 77.2 M 22.8 M 33.5 M 65.6 M 27.9 M 45.5 M 74.4 M...
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)=...
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)= f(-7)=
a) write a program to compute and print n, n(f), f(f(n)), f(f(f(n))).........for 1<=n<=100, where f(n)=n/2 if...
a) write a program to compute and print n, n(f), f(f(n)), f(f(f(n))).........for 1<=n<=100, where f(n)=n/2 if n is even and f(n)=3n+1 if n is odd b) make a conjecture based on part a. use java
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) =...
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) = ∪A∈F f −1 (A) f −1 (∩A∈F A) = ∩A∈F f −1 (A) Show, if A, B ⊆ X, then f(A ∩ B) ⊆ f(A) ∩ f(B). Give an example, if possible, where strict inclusion holds. Show, if C ⊆ X, then f −1 (f(C)) ⊇ C. Give an example, if possible, where strict inclusion holds.
Fibonacci Sequence: F(0) = 1, F(1) = 2, F(n) = F(n − 1) + F(n −...
Fibonacci Sequence: F(0) = 1, F(1) = 2, F(n) = F(n − 1) + F(n − 2) for n ≥ 2 (a) Use strong induction to show that F(n) ≤ 2^n for all n ≥ 0. (b) The answer for (a) shows that F(n) is O(2^n). If we could also show that F(n) is Ω(2^n), that would mean that F(n) is Θ(2^n), and our order of growth would be F(n). This doesn’t turn out to be the case because F(n)...
(a) (f ∘ g)(3) (b) g(f(2)) (c) g(f(5)) (d) (f ∘ g)(−3) (e) (g ∘ f)(−1) (f) f(g(−1))
(a)    (f ∘ g)(3) (b)    g(f(2)) (c)    g(f(5)) (d)    (f ∘ g)(−3) (e)    (g ∘ f)(−1) (f)    f(g(−1))  
Let F(x)=f(f(x)) and G(x)=(F(x))^2 . You also know that f(6)=14,f(14)=3,f′(14)=4,f′(6)=3. Find F′(6)= and G′(6)= .
Let F(x)=f(f(x)) and G(x)=(F(x))^2 . You also know that f(6)=14,f(14)=3,f′(14)=4,f′(6)=3. Find F′(6)= and G′(6)= .
Find f. f ''(x) = 4 − 12x, f(0) = 6, f(2) = 10
Find f. f ''(x) = 4 − 12x, f(0) = 6, f(2) = 10
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Simplify Q2*= L’(F4+F5+F6+F7) + L +(F’1 F’2 F’3 F’5 F’6 F’7)+L’(F5+F6+F7)+ L’(F4+F3+F2+F1)+L+(F’1 F’2 F’3 F’4 F’6...
Simplify Q2*= L’(F4+F5+F6+F7) + L +(F’1 F’2 F’3 F’5 F’6 F’7)+L’(F5+F6+F7)+ L’(F4+F3+F2+F1)+L+(F’1 F’2 F’3 F’4 F’6 F’7)+L’(F6+F7)+ L’(F5+F4+F3+F2+F1)+ L+(F’1 F’2 F’3 F’4 F’5 F’7)+L’(F7)+L’(F6+F5+F4+F3+F2+F1)+L+(F’1 F’2 F’3 F’4 F’5 F’6)            
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT