Question

In: Math

Find f. f ''(x) = 4 − 12x, f(0) = 6, f(2) = 10

Find f.

f ''(x) = 4 − 12x, f(0) = 6, f(2) = 10

Solutions

Expert Solution

Step 1)

we can write,

Hence,

     -----------------------------------------1)

we can write,

Step 2)

we have,

     ----------------------------------------------2)

we have f(0) = 6 hence put x = 0 and f(0) = 6 in equation 2)

we have f(2) = 10 hence put x = 2 and f(2) = 10 in equation 2)

we have D = 6 hence,

Put C = 6 and D = 6 in equation 2) we can write,

we can also write,


Related Solutions

Find f 1)f”(x)=-2+12x-12x(Square), f’(0)=12 F(x)=? 2)Find a function f such that f’(x)=5x cube and the line...
Find f 1)f”(x)=-2+12x-12x(Square), f’(0)=12 F(x)=? 2)Find a function f such that f’(x)=5x cube and the line 5x+y=0 is the tangent to the graph of f F(x)=? 3)A particle is moving with the given data. Find the position of the particle a(t)=11sin(t)+4cos(t), s(0)=0, s(2pi)=16 s(t)=? (please i need help)
f ''(x) = −2 + 24x − 12x^2, f(0) = 7, f '(0) = 12
f ''(x) = −2 + 24x − 12x^2, f(0) = 7, f '(0) = 12
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)=...
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)= f(-7)=
(a) Find the Riemann sum for f(x) = 4 sin(x), 0 ≤ x ≤ 3π/2, with...
(a) Find the Riemann sum for f(x) = 4 sin(x), 0 ≤ x ≤ 3π/2, with six terms, taking the sample points to be right endpoints. (Round your answers to six decimal places.) R6 = (b) Repeat part (a) with midpoints as the sample points. M6 = If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b...
Given f''(x)= 4x-6 and f'(-2)=5 and f(-2)=1 FIND: Find f'(x)= and find f(2)=
Given f''(x)= 4x-6 and f'(-2)=5 and f(-2)=1 FIND: Find f'(x)= and find f(2)=
If f(x) = exg(x), where g(0) = 3 and g'(0) = 4, find f '(0).
If \(f(x)=e^{x} g(x),\) where \(g(0)=3\) and \(g(0)=4,\) find \(f(0)\)
Find f. f ''(x) = 4 + 6x + 24x2,    f(0) = 4,    f (1) = 12
Find f. f ''(x) = 4 + 6x + 24x2,    f(0) = 4,    f (1) = 12
Let F(x)=f(f(x)) and G(x)=(F(x))^2 . You also know that f(6)=14,f(14)=3,f′(14)=4,f′(6)=3. Find F′(6)= and G′(6)= .
Let F(x)=f(f(x)) and G(x)=(F(x))^2 . You also know that f(6)=14,f(14)=3,f′(14)=4,f′(6)=3. Find F′(6)= and G′(6)= .
Let f (x) = 12x^5 + 15x^4 − 40x^3 + 1, defined on R. (a) Find...
Let f (x) = 12x^5 + 15x^4 − 40x^3 + 1, defined on R. (a) Find the intervals where f is increasing, and decreasing. (b) Find the intervals where f is concave up, and concave down. (c) Find the local maxima, the local minima, and the inflection points. (d) Find the Maximum and Minimum Absolute of f over [−2, 2].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT