In: Statistics and Probability
43% of men consider themselves professional baseball fans. You randomly select 10 men and ask each if he considers himself a professional baseball fan. Find the probability that the number who consider themselves baseball fans is (a) exactly five, (b) at least six, and (c) less than four.
Solution
Given that ,
p = 43% = 0.43
1 - p = 1 - 0.43 = 0.57
n = 10
Using binomial probability formula ,
P(X = x) = ((n! / x! (n - x)!) * px * (1 - p)n - x
a)
P(X = 5) = ((10! / 5! (10 - 5)!) * 0.435 * (0.57)10-5
= ((10! / 5! (5)!) * 0.435 * (0.57)5
= 0.2229
Probability = 0.2229
b)
P(X 6) = P(X = 6)+P(X = 7)+P(X = 8)+P(X=9)+P(X=10)
= ((10! / 6! (10-6)!) * 0.436 * (0.57)10-6 + ((10! / 7! (10-7)!) * 0.437 * (0.57)10-7 + ((10! / 8! (10-8)!) * 0.438 * (0.57)10-8 + ((10! / 9! (10-9)!) * 0.439 * (0.57)10-9 + ((10! / 10! (10-10)!) * 0.4310 * (0.57)10-10
= ((10! / 6! (4)!) * 0.436 * (0.57)4 + ((10! / 7! (3)!) * 0.437 * (0.57)3 + ((10! / 8! (2)!) * 0.438 * (0.57)2 + ((10! / 9! (1)!) * 0.439 * (0.57)1+ ((10! / 10! (0)!) * 0.4310 * (0.57)0
= 0.1401+0.0604+0.0171+0.0029+0.0002
Probability = 0.2207
c)
P(X < 4) = P(X=0)+P(X=1)+P(X=2)+P(X=3)
= (10! / 0! (10-0)!) * 0.430 * (0.57)10-0 + (10! / 1! (10-1)!) * 0.431 * (0.57)10-1 + (10! /2! (10-2)!) * 0.432 * (0.57)10 - 2 + (10! /3 ! (10-3)!) * 0.437 * (0.57)10-3
= ((10! / 0! (10)!) * 0.430 * (0.57)10 + ((10! / 1! (9)!) * 0.431 * (0.57)9 + ((10! / 2! (8)!) * 0.432 * (0.57)8 + ((10! /3 ! (7)!) * 0.433 * (0.57)7
= 0.0036+0.0273+0.0927+0.1865
= 0.3102
Probability = 0.3102