Question

In: Advanced Math

a real sequence xn is defined inductively by x1 =1 and xn+1 = sqrt(xn +6) for...

a real sequence xn is defined inductively by x1 =1 and xn+1 = sqrt(xn +6) for every n belongs to N

a) prove by induction that xn is increasing and xn <3 for every n belongs to N

b) deduce that xn converges and find its limit

Solutions

Expert Solution


Related Solutions

Let {xn} be a real summable sequence with xn ≥ 0 eventually. Prove that √(Xn*Xn+1) is...
Let {xn} be a real summable sequence with xn ≥ 0 eventually. Prove that √(Xn*Xn+1) is summable.
Let X = {x1,x2,...,xn} a sequence of real numbers. Design an algorithm that in linear time...
Let X = {x1,x2,...,xn} a sequence of real numbers. Design an algorithm that in linear time finds the continue subsequence of elements xi,xi+1,...,x, which product is the maximum. Suppose that the product of an empty subsequence is 1 and observe that the values can be less to 0 and less to 1.
Please prove the following formally and clearly: Let X1 = 1. Define Xn+1 = sqrt(3 +...
Please prove the following formally and clearly: Let X1 = 1. Define Xn+1 = sqrt(3 + Xn). Show that (Xn) is convergent and find its limit.
Let a sequence {xn} from n=1 to infinity satisfy x_(n+2)=sqrt(x_(n+1) *xn) for n=1,2 ...... 1. Prove...
Let a sequence {xn} from n=1 to infinity satisfy x_(n+2)=sqrt(x_(n+1) *xn) for n=1,2 ...... 1. Prove that a<=xn<=b for all n>=1 2. Show |x_(n+1) - xn| <= sqrt(b)/(sqrt(a)+sqrt(b)) * |xn - x_(n-1)| for n=2,3,..... 3. Prove {xn} is a cauchy sequence and hence is convergent Please show full working for 1,2 and 3.
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is...
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is bounded and monotone. Find the limit. Prove by induction
1. . Let X1, . . . , Xn, Y1, . . . , Yn be...
1. . Let X1, . . . , Xn, Y1, . . . , Yn be mutually independent random variables, and Z = 1 n Pn i=1 XiYi . Suppose for each i ∈ {1, . . . , n}, Xi ∼ Bernoulli(p), Yi ∼ Binomial(n, p). What is Var[Z]? 2. There is a fair coin and a biased coin that flips heads with probability 1/4. You randomly pick one of the coins and flip it until you get a...
Let (xn) be a sequence with positive terms. (a) Prove the following: lim inf xn+1/ xn...
Let (xn) be a sequence with positive terms. (a) Prove the following: lim inf xn+1/ xn ≤ lim inf n√ xn ≤ lim sup n√xn ≤ lim sup xn+1/ xn . (b) Give example of (xn) where all above inequalities are strict. Hint; you may consider the following sequence xn = 2n if n even and xn = 1 if n odd.
. Suppose that the sequence (xn) satisfies |xn –α| ≤ c | xn-1- α|2 for all...
. Suppose that the sequence (xn) satisfies |xn –α| ≤ c | xn-1- α|2 for all n. Show by induction that c | xn- α| ≤ c | x0 - α|2n , and give some condition That is sufficient for the convergence of (xn) to α. Use part a) to estimate the number of iterations needed to reach accuracy |xn –α| < 10-12 in case c = 10 and |x0 –α |= 0.09.
6.42 Let X1,..., Xn be an i.i.d. sequence of Uniform (0,1) random variables. Let M =...
6.42 Let X1,..., Xn be an i.i.d. sequence of Uniform (0,1) random variables. Let M = max(X1,...,Xn). (a) Find the density function of M. (b) Find E[M] and V[M].
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT