Question

In: Advanced Math

Please prove the following formally and clearly: Let X1 = 1. Define Xn+1 = sqrt(3 +...

Please prove the following formally and clearly:

Let X1 = 1. Define Xn+1 = sqrt(3 + Xn). Show that (Xn) is convergent and find its limit.

Solutions

Expert Solution


Related Solutions

a real sequence xn is defined inductively by x1 =1 and xn+1 = sqrt(xn +6) for...
a real sequence xn is defined inductively by x1 =1 and xn+1 = sqrt(xn +6) for every n belongs to N a) prove by induction that xn is increasing and xn <3 for every n belongs to N b) deduce that xn converges and find its limit
Let (xn) be a sequence with positive terms. (a) Prove the following: lim inf xn+1/ xn...
Let (xn) be a sequence with positive terms. (a) Prove the following: lim inf xn+1/ xn ≤ lim inf n√ xn ≤ lim sup n√xn ≤ lim sup xn+1/ xn . (b) Give example of (xn) where all above inequalities are strict. Hint; you may consider the following sequence xn = 2n if n even and xn = 1 if n odd.
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is...
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is bounded and monotone. Find the limit. Prove by induction
Let a sequence {xn} from n=1 to infinity satisfy x_(n+2)=sqrt(x_(n+1) *xn) for n=1,2 ...... 1. Prove...
Let a sequence {xn} from n=1 to infinity satisfy x_(n+2)=sqrt(x_(n+1) *xn) for n=1,2 ...... 1. Prove that a<=xn<=b for all n>=1 2. Show |x_(n+1) - xn| <= sqrt(b)/(sqrt(a)+sqrt(b)) * |xn - x_(n-1)| for n=2,3,..... 3. Prove {xn} is a cauchy sequence and hence is convergent Please show full working for 1,2 and 3.
1. . Let X1, . . . , Xn, Y1, . . . , Yn be...
1. . Let X1, . . . , Xn, Y1, . . . , Yn be mutually independent random variables, and Z = 1 n Pn i=1 XiYi . Suppose for each i ∈ {1, . . . , n}, Xi ∼ Bernoulli(p), Yi ∼ Binomial(n, p). What is Var[Z]? 2. There is a fair coin and a biased coin that flips heads with probability 1/4. You randomly pick one of the coins and flip it until you get a...
Prove the following test: Let {xn} be a sequence and lim |Xn| ^1/n = L 1....
Prove the following test: Let {xn} be a sequence and lim |Xn| ^1/n = L 1. If L< 1 then {xn} is convergent to zero 2. If L> 1 then {xn} is divergent
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
Let {xn} be a real summable sequence with xn ≥ 0 eventually. Prove that √(Xn*Xn+1) is...
Let {xn} be a real summable sequence with xn ≥ 0 eventually. Prove that √(Xn*Xn+1) is summable.
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and...
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and Y1...Xn independent of each other. Assume that the common population SD σ is known but the two means are not. Consider testing the hypothesis null: μx = μy vs alternative: μx ≠ μy. d. Assume σ=1 and n=20. How large must δ be for the size 0.01 test to have power at least 0.99? e. Assume σ=1and δ=0.2. How large must n be for...
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and...
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and Y1...Xn independent of each other. Assume that the common population SD σ is known but the two means are not. Consider testing the hypothesis null: μx = μy vs alternative: μx ≠ μy. a. Find the likelihood ratio test statistic Λ. Specify which MLEs you are using and how you plug them in.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT