Question

In: Physics

A normal refrigeration cycle uses one coolant, so why does vapor compression cycle of an ice...

A normal refrigeration cycle uses one coolant, so why does vapor compression cycle of an ice rink you a primary coolant and a secondary coolant?

Solutions

Expert Solution

The reason is a kind of a politically related technicality.

In fact, some ice rinks used to have a direct cooling by a single coolant. They may have operated at higher temperatures and achieved higher pressures as well as higher efficiencies. See the fourth paragraph of this document.

However, when one looks what the most appropriate coolant is in such systems, he finds out that it's really either ammonia or R-22. The latter causes ozone depletion at 20 times lower rates than other ozone-depleting compounds but even this small amount is unacceptable. On the other hand, R-22 is a 2,000 times more efficient greenhouse gas than CO2 which some people also care about. Due to a combination of building codes, emissions regulations to fight ozone and global warming, and fire regulations, direct coolants ammonia and R-22 are no longer kosher.

There don't seem to be good enough alternatives for direct cooling


Related Solutions

There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the...
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the condenser, it is isostatically cooled, the condensation temperature is 50 ° C., and the condenser outlet is the compressed liquid at 45 ° C. In the evaporator, it is isothermally heated, the evaporation temperature is 10 ° C. and the outlet of the evaporator is heated steam at 15 ° C. When the expansion valve performs isenthalpic expansion, and the adiabatic efficiency of the...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger.
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 ℃ leaving the condenser and enteringthe heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 ℃ by 8 ℃. If the compressor is capable of pumping 5 1/s of vapor refrigerant measuredat the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity in kW,...
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool...
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool a house. It provides 3 refrigeration tons ≈ 10.5kW of cooling (heat removal from the house air). The refrigerant in the evaporator operates at 400kPa while in the condenser it is at 1000kPa. Treat the surroundings as a thermal reservoir at 33◦C and the air in the house as a thermal reservoir at 19◦C. All reservoirs are at 100kPa. 1. What is the COPr...
An ideal vapor compression refrigeration cycle with R134a as the working fluid operates between the pressure...
An ideal vapor compression refrigeration cycle with R134a as the working fluid operates between the pressure limits of 200 kPa and 1200 kPa. Determine a) the mass fraction of the refrigerant that is in the liquid phase at the inlet of the evaporator, and b) the amount of heat transfer (in kJ/kg) to the refrigerant in the evaporator (??).
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating...
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enter
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enters   the   compressor   as   a   saturated   vapour   at   200   kPa,   and   exits   the   condenser   as   a   saturated   liquid   at   900   kPa.   The   rate   of   refrigeration   of   the   cycle   is   to   be   6.0   tons   of   refrigeration   (1   ton   of   refrigeration   =   3.517   kW).   The   compressor   isentropic   efficiency   is   80%.   Determine:   a) The   temperature   of   evaporation   and   condensation   of   the   refrigerant;   b) Mass   flow   of   the   refrigerant   R-134a,   in  ...
The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters...
The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters the compressor, and superheated vapor leaves at 120°F, 180 lbf/in.2 Heat transfer from the compressor to its surroundings occurs at a rate of 3.5 Btu per lb of refrigerant passing through the compressor. Liquid refrigerant enters the expansion valve at 85°F, 180 lbf/in.2 The condenser is water-cooled, with water entering at 65°F and leaving at 80°F with a negligible change in pressure. Determine (a)...
Statement: Selection of compressor and refrigerant for HVAC system that is operating on Vapor Compression Refrigeration...
Statement: Selection of compressor and refrigerant for HVAC system that is operating on Vapor Compression Refrigeration System. The heat load is 120,000 BTU/hr and temperature is to be maintained at space is 50C. Step 1: Select ambient and environmental conditions Step 2: Select refrigerant, preliminary calculations, use of property charts, suction discharge pressure of compressor to achieve required cooling, compressor capacity etc. Step 3: Select compressor (Stage, rpm, displacement, size etc) need detailed solution
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT