Question

In: Statistics and Probability

1. A random sample of size n = 10 is taken from a large population. Let...

1. A random sample of size n = 10 is taken from a large population. Let μ be the unknown population mean. A test is planned of H0: μ=12vs. HA: μ̸=12usingα=0.1. A QQ plot indicates it is reasonable to assume a normal population. From the sample, x̄ = 14.2 and s = 4.88.

(I suggest doing this problem with a calculator and table as practice for exams. You may check your answers with R if you wish.)

(a) Since the data leave it plausible that the population is normal, and the population standard deviationσ is unknown, a t-test is appropriate. Compute the p-value of the test. Do you reject or not reject H0?

(b) Based on the test (and without calculating the interval), say whether you expect a 90% confidence interval to include 12.

(c) Using s = 4.88 as our best guess of σ (that is, pretending we know σ = 4.88), compute the power of a future test of H0: μ=12vs. HA: μ̸=12, if the true population mean, is μA =15.

(d) Using s = 4.88 as our best guess of σ (that is, pretending we know σ = 4.88), approximately what sample size would be required to achieve a power of 0.8 if the true population mean is μA = 15? Give your answer as the smallest whole number that meets the criterion.

Solutions

Expert Solution

1)

A)

Ho :   µ =   12
Ha :   µ ╪   12
      
Level of Significance ,    α =    0.1
sample std dev ,    s =    4.8800
Sample Size ,   n =    10
Sample Mean,    x̅ =   14.200
      
degree of freedom=   DF=n-1=   9
      
Standard Error , SE =   s/√n =   1.5432
      
t-test statistic=   (x̅ - µ )/SE =    1.4256
      
  
p-Value   =   0.1877
Conclusion:     p-value>α=0.10, Do not reject null hypothesis   

---------------

b)

since, we do not reject null hypothesis at α=0.10, so it will contain the null hypothesis ,µ=12

----

c)

true mean ,    µ =    15                          
                                  
hypothesis mean,   µo =    12                          
significance level,   α =    0.1                          
sample size,   n =   10                          
std dev,   σ =    4.88                          
                                  
δ=   µ - µo =    3                          
                                  
std error of mean,   σx = σ/√n =    1.5432                          
                                  
Zα/2   = ±   1.645   (two tailed test)                      
We will fail to reject the null (commit a Type II error) if we get a Z statistic between                           -1.645   and   1.645
these Z-critical value corresponds to some X critical values ( X critical), such that                                  
                                  
-1.645   ≤(x̄ - µo)/σx≤   1.645                          
9.462   ≤ x̄ ≤   14.538                          
                                  
now, type II error is ,ß =        P (   9.462   ≤ x̄ ≤   14.538   )          
       Z =    (x̄-true mean)/σx                      
       Z1 =   -3.589                      
       Z2 =    -0.299                      
                                  
   so, P(   -3.589   ≤ Z ≤   -0.299   ) = P ( Z ≤   -0.299   ) - P ( Z ≤   -3.589   )
                                  
       =   0.382   -   0.000   =   0.3822      
                                  
power =    1 - ß =   0.6178                          
------------------------

d)

True mean,   µ =    15
hypothesis mean,   µo =    12
      
Level of Significance ,    α =    0.1
std dev =    σ =    4.88
power =    0.8

ß=1-power = 0.2
      
δ=   µ - µo =    3


      
Z (α/2)=       1.6449
      
Z (ß) =        0.8416
      
sample size needed =    n = ( σ [ Z(ß)+Z(α/2) ] / δ )² =    16.3593
      
so, sample size =        17


Related Solutions

A random sample of size n = 100 is taken from a population of size N...
A random sample of size n = 100 is taken from a population of size N = 600 with a population proportion of p =0.46. Is it necessary to apply the finite population correction factor? Calculate the expected value and standard error of the sample proportion. What is the probability that the sample mean is less than .40?
A random sample of size n = 69 is taken from a population of size N...
A random sample of size n = 69 is taken from a population of size N = 971 with a population proportion p = 0.68. a-1. Is it necessary to apply the finite population correction factor? Yes or no? a-2. Calculate the expected value and the standard error of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) Expected Value- Standard Error- b. What is the probability that the sample proportion is...
A random sample of size n = 71 is taken from a population of size N...
A random sample of size n = 71 is taken from a population of size N = 639 with a population proportion p = 0.73. a-1. Is it necessary to apply the finite population correction factor? a-2. Calculate the expected value and the standard error of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) b. What is the probability that the sample proportion is less than 0.66? (Round “z” value to...
A random sample of size n = 152 is taken from a population of size N...
A random sample of size n = 152 is taken from a population of size N = 3,300 with mean μ = −71 and variance σ2 = 112. [You may find it useful to reference the z table.] a-1. Is it necessary to apply the finite population correction factor? Yes No a-2. Calculate the expected value and the standard error of the sample mean. (Negative values should be indicated by a minus sign. Round "standard error" to 2 decimal places.)...
A random sample of size n = 472 is taken from a population of size N...
A random sample of size n = 472 is taken from a population of size N = 9,700 with mean μ = −63 and variance σ2 = 176. [You may find it useful to reference the z table.] A-1 Is it necessary to apply the finite population correction factor? Yes No a-2. Calculate the expected value and the standard error of the sample mean. (Negative values should be indicated by a minus sign. Round "standard error" to 2 decimal places.)...
A random sample of size n = 225 is taken from a population with a population...
A random sample of size n = 225 is taken from a population with a population proportion P = 0.55. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) b. What is the probability that the sample proportion is between 0.50 and 0.60? (Round “z” value to 2...
A random sample of size n = 130 is taken from a population with a population...
A random sample of size n = 130 is taken from a population with a population proportion p = 0.58. (You may find it useful to reference the z table.) a. Calculate the expected value and the standard error for the sampling distribution of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) b. What is the probability that the sample proportion is between 0.50 and 0.70? (Round “z” value to 2...
A random sample of size n is taken from a normally distributed population with a population...
A random sample of size n is taken from a normally distributed population with a population standard deviation (σ ) of 11.6. The sample mean (x) is 44.6. Construct a 99% confidence interval about µ with a sample size of 26.
A random sample of size n = 55 is taken from a population with mean μ...
A random sample of size n = 55 is taken from a population with mean μ = −10.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard error" to 4 decimal places.) b. What is the probability that...
A random sample of size n = 50 is taken from a population with mean μ...
A random sample of size n = 50 is taken from a population with mean μ = −9.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard deviation" to 4 decimal places.) Expected Value= Standard Error= b. What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT