Question

In: Statistics and Probability

A random sample of size n = 55 is taken from a population with mean μ...

A random sample of size n = 55 is taken from a population with mean μ = −10.5 and standard deviation σ = 2. [You may find it useful to reference the z table.]

a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard error" to 4 decimal places.)

b. What is the probability that the sample mean is less than −11? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.)

c. What is the probability that the sample mean falls between −11 and −10? (Do not round intermediate calculations. Round "z" value to 2 decimal places and final answer to 4 decimal places.)

Solutions

Expert Solution

Solution :

Given that,

mean = = −10.5

standard deviation = = −10.5

n = 55

= −10.5

The expected value

  =  (/n) = ( 2 / 55 ) = 0.2697

The standard error = 0.2697

P (   < 95 )

P (−11< x < −10)

P ( −11 −10.5 / 0.2697) < ( x -  / ) < ( −10 - −10.5 / 0.2697)

P ( 0.5 / 0.2697< z < - 0.5/ 0.2697)

P ( 1.85< z < - 1.85 )

P ( z < 0.97 ) - P ( z < - 0.97)

Using z table

= 0.8340 - 0.1660

= 0.6680

Probability = 0.6680


Related Solutions

A random sample of size n = 50 is taken from a population with mean μ...
A random sample of size n = 50 is taken from a population with mean μ = −9.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard deviation" to 4 decimal places.) Expected Value= Standard Error= b. What...
A random sample of size n = 100 is taken from a population of size N...
A random sample of size n = 100 is taken from a population of size N = 600 with a population proportion of p =0.46. Is it necessary to apply the finite population correction factor? Calculate the expected value and standard error of the sample proportion. What is the probability that the sample mean is less than .40?
A random sample of size n = 69 is taken from a population of size N...
A random sample of size n = 69 is taken from a population of size N = 971 with a population proportion p = 0.68. a-1. Is it necessary to apply the finite population correction factor? Yes or no? a-2. Calculate the expected value and the standard error of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) Expected Value- Standard Error- b. What is the probability that the sample proportion is...
A random sample of size n = 71 is taken from a population of size N...
A random sample of size n = 71 is taken from a population of size N = 639 with a population proportion p = 0.73. a-1. Is it necessary to apply the finite population correction factor? a-2. Calculate the expected value and the standard error of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) b. What is the probability that the sample proportion is less than 0.66? (Round “z” value to...
A random sample of size n = 152 is taken from a population of size N...
A random sample of size n = 152 is taken from a population of size N = 3,300 with mean μ = −71 and variance σ2 = 112. [You may find it useful to reference the z table.] a-1. Is it necessary to apply the finite population correction factor? Yes No a-2. Calculate the expected value and the standard error of the sample mean. (Negative values should be indicated by a minus sign. Round "standard error" to 2 decimal places.)...
A random sample of size n = 472 is taken from a population of size N...
A random sample of size n = 472 is taken from a population of size N = 9,700 with mean μ = −63 and variance σ2 = 176. [You may find it useful to reference the z table.] A-1 Is it necessary to apply the finite population correction factor? Yes No a-2. Calculate the expected value and the standard error of the sample mean. (Negative values should be indicated by a minus sign. Round "standard error" to 2 decimal places.)...
A random sample of size n = 225 is taken from a population with a population...
A random sample of size n = 225 is taken from a population with a population proportion P = 0.55. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) b. What is the probability that the sample proportion is between 0.50 and 0.60? (Round “z” value to 2...
A random sample of size n = 130 is taken from a population with a population...
A random sample of size n = 130 is taken from a population with a population proportion p = 0.58. (You may find it useful to reference the z table.) a. Calculate the expected value and the standard error for the sampling distribution of the sample proportion. (Round "expected value" to 2 decimal places and "standard error" to 4 decimal places.) b. What is the probability that the sample proportion is between 0.50 and 0.70? (Round “z” value to 2...
Random sample of size n=19 is taken from a Normal population, sample mean is 11.5895, standard...
Random sample of size n=19 is taken from a Normal population, sample mean is 11.5895, standard deviation is 1.0883. 1. At the 2% level, test whether it is reasonable to believe that the true population variance is larger than 1. Using the scenario from above, do the following 2. Derive the power function. Show your work. 3. Using R, graph the power function for 0.5 < sigma^2 < 3.5. 4. Pretend that the sample size was actually 56. Plot this...
A random sample of size n is taken from a normally distributed population with a population...
A random sample of size n is taken from a normally distributed population with a population standard deviation (σ ) of 11.6. The sample mean (x) is 44.6. Construct a 99% confidence interval about µ with a sample size of 26.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT