Question

In: Physics

1. An aluminum ring of radius 5.00 cm and resistance 3.00 × 10–4 O is placed...

1. An aluminum ring of radius 5.00 cm and resistance 3.00 × 10–4 O is placed on top of a long air-core solenoid with 1 000 turns per meter and radius 3.00 cm, as shown in the sketch below. Over the area of the end of the solenoid, assume that the axial component of the field produced by the solenoid is half as strong as at the center of the solenoid. Assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s. (a) What is the induced current in the ring? At the center of the ring, what are (b) the magnitude and (c) the direction of the magnetic field produced by the induced current in the ring?

2. The square loop in the sketch shown below is made of wires with total series resistance 10.0 O. It is placed in a uniform 0.100-T magnetic field directed perpendicularly into the plane of the paper. The loop, which is hinged at each corner, is pulled as shown until the separation between points A and B is 3.00 m. If this process takes 0.100 s, what is the average current generated in the loop? What is the direction of the current?

3. In the sketch shown below, the bar magnet is moved toward the loop. Is Va – Vb positive, negative, or zero? Explain.

Solutions

Expert Solution


Related Solutions

A 1kg ring with a radius of 10 cm rolls down a board inclined at 30...
A 1kg ring with a radius of 10 cm rolls down a board inclined at 30 degrees from a height of 4 meter. At the bottom of the inclined, n a frictionless table fits a 3-kg block. After coming off of the incline, the ring slides (without rolling) until colliding and coupling with the block. The ring-block system then continues to move and flies off the edge of the 1.5 meter high table. What is the velocity of the ring-block...
For objects placed (a) 25.0 cm, (b) 10.0 cm, and (c) 5.00 cm in front of...
For objects placed (a) 25.0 cm, (b) 10.0 cm, and (c) 5.00 cm in front of a concave mirror (whose focal point is 10.0cm in front of the mirror), (i) locate the resulting image, (ii) compute the image’s magnification (state if it’s upright or inverted and whether it’s larger or smaller than the object), (iii) classify the image as real or virtual, and (iv)[Extra Credit] construct a careful, ray diagram (to scale) using the four principal rays to corroborate your...
A brass ring with inner diameter 2.00 cm and outer diameter 3.00 cm needs to fit...
A brass ring with inner diameter 2.00 cm and outer diameter 3.00 cm needs to fit over a 2.00 cm-diameter steel rod, but at 20∘C the hole through the brass ring is 48 μmtoo small in diameter. To what temperature, in ∘C, must the rod and ring be heated so that the ring just barely slips over the rod?​
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm is mounted on a motor through its center. The motor accelerates the disk uniformly from rest by exerting a constant torque of 1.50 N · m. (a) What is the time required for the disk to reach an angular speed of 8.50 ✕ 102 rpm? (b) What is the number of revolutions through which the disk spins before reaching this angular speed? 2. A...
A 400-W cylindrical resistance heater is 1 m long and 0.5-cm-diameter. The resistance wire is placed...
A 400-W cylindrical resistance heater is 1 m long and 0.5-cm-diameter. The resistance wire is placed horizontally in a fluid at 20◦C, flowing at a velocity of 20 m/s. Determine the outer surface temperature of the resistance wire in steady operation if the fluid is (a) air and (b) water. Ignore any heat transfer by radiation and evaluate properties of air at 800 K and properties of water at 315 K.
A ring of charge with radius 1.5 cm and a charge of 100nC has the electric...
A ring of charge with radius 1.5 cm and a charge of 100nC has the electric field along the primary axis of the ring as E=kQx/(R^2+x^2)^3/2 1. find electric field 2.25 cm from the center of the ring along the primary axis 2. what force would a charge of -5nC experience at this point 3. what point charge would you have to place at x=-5cm to make the electric field zero at this location?
A) Ball made of wood and ball made of aluminum, of the same radius are placed...
A) Ball made of wood and ball made of aluminum, of the same radius are placed into reservoir with water. Aluminum ball after sinking rests at the bottom, wooden ball floats. Which ball experiences greater buoyancy force? a Aluminum b Wooden c Buoyncy forces are the same d There is not enough information B) Water flows through a pipe with speed of 18 m/s. Pipe suddenly widens to 3 times of its initial diameter. The speed of water in broader...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
A 4.00-m-long cylinder of solid aluminum has a radius of 2.00 cm. 1) If the cylinder...
A 4.00-m-long cylinder of solid aluminum has a radius of 2.00 cm. 1) If the cylinder is initially at a temperature of 4.00∘∘C, how much will the length change when the temperature rises to 30.0°C? 2)Due to the temperature increase, by how much (in %) would the density of the aluminum cylinder decrease? 3)By what percentage does the volume of the cylinder increase?
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil.
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil att = 5.40 s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT