Question

In: Physics

In the double-slit experiment of the figure below, the viewing screen is at distance D =...

In the double-slit experiment of the figure below, the viewing screen is at distance D = 4.00 m, point P lies at distance y = 13.0 cm from the center of the pattern, the slit separation d is 4.50

Solutions

Expert Solution

The wave length of light ? = 650nm

the seperation between slits d = 4.50?m

the distance between screen D = 4.0m

the postion of point P is y = 13cm

(a) The position of P in terms of phase difference

           ? = 2?/? dsin?

              =[ 2?/(650*10^-9)](4.5*10^-6)(y/D)

since for small angles sin? ? tan? = y/D

            = 0.0435*10^3 (13*10^-2/4)

            = 0.45? rad = 1.413 rad

(b) The ratio of intensity

           I/I0 = 4cos^2(?/2)

                  = 4cos^2(1.413/2)

                   =2.3


Related Solutions

There is double-slit experiment of slit spacing d and apart from the screen as L. Let’s...
There is double-slit experiment of slit spacing d and apart from the screen as L. Let’s think about the mth bright fringe. Here m is positive integer. Then expand the distance between the slit and screen as ? + ∆?. Find the phase different between the mth bright fringes at the original screen and expanded screen.
The figure (Intro 1 figure) shows the interference pattern obtainedin a double-slit experiment with light...
The figure (Intro 1 figure) shows the interference pattern obtained in a double-slit experiment with light of wavelength λ. Part A Identify the fringe or fringes that result from the interference of two waves whose phases differ by exactly 2λ. Enter the letter(s) indicating the fringe(s) in alphabetical order. For example, if you think that fringes A and C are both correct, enter AC. Part B The same double-slit experiment is then immersed in water (with an index of refraction of...
Explain Young's double slit experiment
Explain Young's double slit experiment
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? OPTIONS: The distance between maxima stays the same.T he distance between maxima increases. The distance between maxima decreases. Not enough information given.
No fringes are seen in a single-slit diffraction pattern if ..... the distance to the screen...
No fringes are seen in a single-slit diffraction pattern if ..... the distance to the screen is greater than the slit width the wavelength is less than the distance to the screen the wavelength is greater than the slit width the screen is far away the wavelength is less than the slit width
In a double-slit experiment, if the slit separation is increased by a factor of two, what...
In a double-slit experiment, if the slit separation is increased by a factor of two, what happens to the interference pattern shown on the screen? What happens if the wavelength is halved? What happens if the distance to the screen is double? Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each other, a sound of frequency 1100 Hz in a room where the speed of sound is 344 m/s. A woman is standing...
what is the importance of Young's double-slit experiment?
what is the importance of Young's double-slit experiment?
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe? 2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in cm) between the...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
A double slit separation is 3 mm and is illuminated by a white light. A screen...
A double slit separation is 3 mm and is illuminated by a white light. A screen is placed 3.0 m away to observe the interference pattern. a) What is the angular separation of the 2nd order red (λ=700 nm) and 3rd order violet (λ=400 nm) bright fringe? b) How high is the 4th order fringe for the yellow color (λ=589 nm) on the screen? c) Is it possible to adjust the slit separation so that for the 1st order red...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT