Question

In: Physics

A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...

A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m.

(a) What is the spring constant of the spring?

(b) What is the total mechanical energy of the system (the spring and block system)?

(c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement of the block is 0.05 m (in other words, the distance between the block and the equilibrium position is 0.05 m, or the block is half way between the equilibrium and the maximum displacement)?

Solutions

Expert Solution

Please comment if you have any doubts..


Related Solutions

A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 260 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.199 m and v = 3.920 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring of spring constant 120 N/m. When t = 0.84 s, the position and velocity of the block are x = 0.127 m and v = 3.23 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A block with a mass of 2.00 kg is attached to a spring, undergoing a horizontal...
A block with a mass of 2.00 kg is attached to a spring, undergoing a horizontal simple harmonic motion with a period of 1.26 s. The initial speed of the block is 1.20 m/s when the spring is stretched by 25.0 cm. Let x = 0 at the equilibrium position. Ignore friction. a)Find the spring constant. b)Find the total energy of this object. c)Find the maximum displacement of the motion. d)Find the maximum speed. e)For the block, at what position...
A block with mass 5 kg is attached to the end of a horizontal spring with...
A block with mass 5 kg is attached to the end of a horizontal spring with spring constant 200N/m. The other end of the spring is attached to a wall. The spring is stretched 10cm in the positive directions from its equilibrium length. Assume that the block is resting on a frictionless surface. A) When the spring is fully stretched, what is the magnitude of the force from the spring on the block? B) We then release the block, letting...
A block of mass m= 10.0kg is attached to the end of an ideal spring. Due...
A block of mass m= 10.0kg is attached to the end of an ideal spring. Due to the weight of the block, the block remains at rest when the spring is stretched a distance h= 8.00cm from its equilibrium length. (Figure 1) The spring has an unknown spring constant k. Take the acceleration due to gravity to be g = 9.81m/s2 . What is the spring constant k? Express your answer in newtons per meter.         k...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant is 50 N/m is given by x = A cos ωt, where A = 12 cm. In the first complete cycle, find the values of x and t at which the kinetic energy is equal to one half the potential energy.
a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0...
a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0 N/m on a frictionless table. (i) At rest/At Equilibrium: The spring-mass system is at rest, the mass is at the equilibrium position. Calculate the potential energy (PEs), kinetic energy (KE) and total mechanical energy (Etot) of the spring-mass system. (ii) At rest/Displaced from Equilibrium: The mass is displaced 6 cm to the left (negative X-direction) by compressing the spring, the spring-mass system is at...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103 N/m. At time t = 1.40 s, the position and the velocity of the block are x = 0.150 m and v = 3.18 m/s respectively. What is the amplitude of oscillation? What was the position of the block at t = 0? What was the speed of the block at t = 0?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT