Question

In: Physics

A 3.45 kg mass attached to a spring oscillates with a period of 0.360 s and...

A 3.45 kg mass attached to a spring oscillates with a period of 0.360 s and an amplitude of 17.5 cm.

(a) Find the total mechanical energy of the system

(b) Find the maximum speed of the mass.

Solutions

Expert Solution


Related Solutions

A mass attached to a spring oscillates with a period of 3.15 s. (a) If the...
A mass attached to a spring oscillates with a period of 3.15 s. (a) If the mass starts from rest at x = 0.0480 m and time t = 0, where is it at time t = 6.97 s? m? (b) Is the mass moving in the positive or negative x direction at t = 6.97 s? positive x direction? negative x direction?
A 1.25 kg mass oscillates on a spring with a period of 5.00 s. During oscillation...
A 1.25 kg mass oscillates on a spring with a period of 5.00 s. During oscillation the minimum length of the spring is 4.00 cm and the maximum length of the spring is 9.50 cm. What is the total energy of this system?
A mass of 0.30 kg on the end of a spring oscillates with a period of...
A mass of 0.30 kg on the end of a spring oscillates with a period of 0.45 s and an amplitude of 0.15 m . A) Find the velocity when it passes the equilibrium point. B) Find the total energy of the system. C) Find the spring constant. D) Find the maximum acceleration of the mass.
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 5.30 cm left of the equilibrium position and moving to the right at 38.5 cm/s . Part A What is the phase constant? Part B What is the phase at t=.05s? Part C What is the phase at t=1s ? Part D What is the phase at t=1.5s?
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass...
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass and spring are swung in a horizontal circle, with the free end of the spring at the pivot. What rotation frequency, in rpm, will cause the spring’s length to stretch by 15%?
A 6.0 kg object attached to a horizontal spring oscillates with an amplitude A = 10...
A 6.0 kg object attached to a horizontal spring oscillates with an amplitude A = 10 cm and a frequency f = 2.2 Hz. (a) What is the force constant of the spring? _____N/m (b) What is the period of the motion? _____s (c) What is the maximum speed of the object? _____m/s (d) What is the maximum acceleration of the object? _____m/s2
1. A block of mass m attached to a spring with spring constant k oscillates horizontally...
1. A block of mass m attached to a spring with spring constant k oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m, a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s. b) Oscillating particles generate waves. What will be the equation of a...
A mass oscillates on a spring with a period T and an amplitude 0.48 cm. The...
A mass oscillates on a spring with a period T and an amplitude 0.48 cm. The mass is at the equilibrium position x=0 at t=0, and is moving in the positive direction. a.) Where is the mass at the time t=T/8? b.) Where is the mass at the time t=T/4? c.) Where is the mass at the time t=T/2? d.) Where is the mass at the time t=3T/4? e.) Plot the position versus time graph with the vertical axis representing...
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
A 3.45-g bullet embeds itself in a 1.37-kg block, which is attached to a spring of...
A 3.45-g bullet embeds itself in a 1.37-kg block, which is attached to a spring of force constant 785 N/m. If the maximum compression of the spring is 5.48 cm, find the initial speed of the bullet in m/s. Find the time for the bullet-block system to come to rest in seconds.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT