Question

In: Physics

A 6.0 kg object attached to a horizontal spring oscillates with an amplitude A = 10...

A 6.0 kg object attached to a horizontal spring oscillates with an amplitude A = 10 cm and a frequency f = 2.2 Hz.

(a) What is the force constant of the spring?
_____N/m

(b) What is the period of the motion?
_____s

(c) What is the maximum speed of the object?
_____m/s

(d) What is the maximum acceleration of the object?
_____m/s2

Solutions

Expert Solution

Mass of the object = m = 6 kg

Amplitude of the oscillation = A = 10 cm = 0.1 m

Frequency of oscillation = f = 2.2 Hz

Spring constant = k

k = 42f2m

k = 42(2.2)2(6)

k = 1146.45 N/m

Angular frequency =

= 2f

= 2(2.2)

= 13.823 rad/s

Time period of motion = T

T = 1/f

T = 1/2.2

T = 0.454 sec

Maximum speed of the object = V

V = A

V = (0.1)(13.823)

V = 1.382 m/s

Maximum acceleration of the object = a

a = A2

a = (0.1)(13.823)2

a = 19.107 m/s2

a) Force constant of the spring = 1146.45 N/m

b) Time period of motion = 0.454 sec

c) Maximum speed of the object = 1.382 m/s

d) Maximum acceleration of the object = 19.107 m/s2


Related Solutions

A 10 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.4 kN/m. The block is pulled to the right so that the spring is stretched 5.8 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 38 N. (a) What is the kinetic energy of the block when it has moved 2.2 cm from...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 18.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
an 10 kg object is hung from a spring attached to a fixed support. The spring...
an 10 kg object is hung from a spring attached to a fixed support. The spring constant of the spring is k=40 Nm**(-1) (I mean to the power of -1) Suppose an external downward force of magnitude f(T) = 20 e **(-2t) N is applied to the object, and damping due to air resistence occurs with damping constant beta = 40 N s m **(-1). Let y(t) denote the distance in meters of the object below its equilibrium position at...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 2.9 kN/m. The block is pulled to the right so that the spring is stretched 8.4 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 2.7 cm from...
A 11.9-kg object oscillates at the end of a vertical spring that has a spring constant...
A 11.9-kg object oscillates at the end of a vertical spring that has a spring constant of 1.80 โœ• 104 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N ยท s/m. (a) Calculate the frequency of the damped oscillation. Hz (b) By what percentage does the amplitude of the oscillation decrease in each cycle? % (c) Find the time interval that elapses while the energy of the system drops to 3.00% of its...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose it is displaced 0.125 m from its equilibrium position and released with zero initial speed. After 0.860 s, its displacement is found to be 0.125 m on the opposite side and it has passed the equilibrium position once during this interval.Find the amplitude of the motion.=________________mFind the period of the motion.=________________sFind the frequency of the motion.=_________________Hz
A 190 g mass attached to a horizontal spring oscillates at a frequency of 4.90 Hz....
A 190 g mass attached to a horizontal spring oscillates at a frequency of 4.90 Hz. At t = 0s, the mass is at x = 5.60 cm and vx = -24.0 cm/s. Determine: The period The angular frequency The amplitude The phase constant
A 155 gg mass attached to a horizontal spring oscillates at a frequency of 3.70 Hz...
A 155 gg mass attached to a horizontal spring oscillates at a frequency of 3.70 Hz . At t =0s, the mass is at x= 6.40 cmcm and has v =โˆ’ 45.0 cm/s . Determine: a)The maximum speed b)The maximum acceleration. c)The total energy. d)The position at t= 4.80 s
A 180 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz....
A 180 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t = 0 s, the mass is at x=7.00 cm and has vx= -29.0 cm/s. Determine: The maximum speed, the maximum acceleration, the total energy, and the position at t = 4.40 s.
A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz....
A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t =0s, the mass is at x= 7.00 cm and has vx =โˆ’ 35.0 cm/s . Determine: The maximum speed. The maximum acceleration. The total energy. The position at t= 2.80 s . In the previous parts, the following was found: period = 0.357 s, angular frequency = 17.59 rad/s, amplitude = 7.277 cm, phase constant = 15.8679 degrees.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT